

Bridge Life Cycle Optimisation

Closing Seminar 14-15 May, 2012 Malmö

ETSI LCC Methodology

Håkan Sundquist Structural Engineering and Bridges Royal Institute of Technology, Stockholm

LCC optimization

Agency or owner costs

Include society costs during maintenance and repair

Traffic disturbances are costly for users!

User benefit and cost

Håkan Sundquist

Time/a

User costs due to major repair

Disposal

m-1

n+1

n

Costs for the society due to accidents and total failure

Bridge Life Cycle Optimisation Accidents are usually covered by the society and not by agencies like TrV or FinnRA

"Soft values" must also be included

Environmental issues must also be included!

Optimising

LCC

- Life Cycle Costing LCC is a technique which enables comparative cost assessments to be made over a specified period of time, taking into account all relevant economic factors
 - initial capital costs
 - <u>future</u> operational and maintenance costs
 - owner costs
 - user costs
 - society costs
 - <u>future</u> disposal cost
- Used methodology is usually the present value of the total cost of this asset over its lifetime

LCC scheme

17

Bridge Life Cycle Optimisation

LCC

Tools and formulas

The costs are recalculated to one point in time usually the day of opening the bridge or other structure

$$LCC_{\text{owner}} = \sum_{t=0}^{T} \frac{C_{t}}{\left(1+r\right)^{t}}$$

- C_t the sum of all costs incurred at time t,
- *p* the real interest rate or a rate taking into account changes in the benefit of the structure and
- *t* is the time period studied, typically for a structure for the infrastructure the expected life span.

Interest rate

The crocodile

Trend lines

In average 6,24 %– 4,88 % = 1,36 %, but say 1 %

Håkan Sundquist

The most complicated factor in a LCC analysis

Bridge Life Cycle Optimisation

Degradation rate and thus:

- Time between inspections
- Time between regular maintenance
- Time between remedial actions
 - Repair

. . .

- Strengthening
- Upgrading

- 1. Mechanistic or chemical models
- 2. Evaluation results from large field observations,
- 3. The up to day most applied method is to use experience from specialists, usually people deeply involved with inspection of bridges

- Based on the general formulas for calculating LCC
- Cost for inspections are from a database for cost
- Cost from repair actions is from a database on costs for all types of repair
- Time between repairs are chosen by the program user, but default values are from experience
- Both stand alone programs and Web-based programs have been developed and are now being refined and updated!
- A lecture will be given to-morrow

Methods for evaluation of degradation

- Evaluation using mechanistic methods
 - diffusion models for chlorides
 - carbonation rates
 - number of frost cycles
 - ...
- Regression and statistical methods based on inspections and classification of damages

Why we prefer statistical methods before mechanistic models for evaluation of degradation rates

- The mechanistic models like Fick's law, carbonation rates, number of frost cycles must be based on a very good knowledge of materials, climate, construction and more
- There is an important coupling between the different degradation mechanisms not yet known
- The "domino"-effect. Degradation of one component leads to degradation of other components

Bridge Life Cycle Optimisation

Program description and use Will be discussed in my lecture at session 3