

Bridge Life Cycle Optimisation

Closing Seminar 14-15 May, 2012 Malmö

Introduction of new ETSI tools – Life Cycle Assessment (LCA)

Prof. Helge Brattebø Industrial Ecology Programme Dept. of Hydraulic and Environmental Engineering Norwegian University of Science and Technology

Why LCA tool in ETSI?

Bridge Life Cycle Optimisation

- Growing demand for sustainable infrastructure solutions
 - particularly regarding resource efficiency, and energy and carbon efficiency
- Life cycle thinking a required premises today, to be added to the local environmental issues
 - as normally covered in SEA and EIA of road projects
- Material and product suppliers offer LCA information
 - EPDs as basis for market competition

=> LCA likely to be mandatory during a few years
=> From early phase planning to bridge contract

Early phase planning – Route location?

Feasibility study to contract – Design?

- Assessing LCA consequences of a given bridge design, with/without a corresponding Life Cycle Plan (LCP)
- LCA method developed in ETSI based on masses

The LCA framework (ISO 14041)

- ISO 14041:2006 specifies how to carry out LCA
- Further detailed by ILCD Handbook of LCA (2010-11)
- And Product Category Rules (PCR) on how to develop Environmental Product Declarations (EPD) in Construction

Phase 1: Goal and scope definition

• What would this look like for a road bridge? (purpose, function, system boundary)

Phase 2: Life Cycle Inventory Analysis

Phase 3: Life cycle impact assessment

Bridge Life Cycle Optimisation

• Grouping and aggregating different environmental impacts is needed for decision support!

Phase 3: Life cycle impact assessment

Bridge Life Cycle Optimisation

Alternative aggregation method as decided upon in ETSI-II

The ETSI BridgeLCA tool

Bridge Life Cycle Optimisation

- ETSI definitions are used
 - Bridge system and elements
 - Bridge life cycle plan
- State-of-the-art LCA methodology is used
 - ILCD Handbook of LCA
 - PCR for Constructions
 - Ecoinvent v2 LCA database (default emission values)
- Excel model
 - Prepared for using national specific or project specific emission data
 - Calculating selected midpoint-level environmental impact categories, and normalized and weighted results
 - Calculating energy consumption
 - User friendliness and flexibility (ETSI-II recommendations)

BridgeLCA Input: Major and minor impact materials

	Exce	File Edit	View Insert Format Too	ls Data Window	Hel	р 🐓					č	3 😚		· @	()	●) ¥		(Fullac	let) or	ns. 2. I	mai 2	0:57	Helge	Bratt	ebø	Q
0	0							Bridg	e LCA	test.x	lsx															
					She	ote	Chart	c	Smart	Art Gra	nhics	w	ordArt											Clos	e Full Sr	creen
0	A	В	C	D	E	G	H		Jinar	K	L	M	N	0	Р	0	R	S	Т	U	V	W	X	Y	Z	AA
1		-			-						-					~										
2		INPUT TABLE	FOR BRIDGE LCA																							
3	Project:	Test Fretheim	Analyst	: Reenaas	Date:		10-10-11	RUN:	1				1													
4		Deldes altration	Diaman .	•		1.16																				
7		Bridge situation	Norway	4		Life cyc	e stages							—												_
-		Emission data:	Norway			Material	productio	n																		_
																		5. Sec	ondary							
9						1.	Foundatio	n	3. Abu	tment an	nd Piers		4. Mai	n load-be	aring str	ucture		struc	tures			6.	Equipmer	at		
						11																				
						11					to											ofin				
						11					Idns								un			r pro				
								5			a								Lius	đ		vate				F
						sla		tect			1. Pr		5			E	۲		Bui	dhir		pue		Beili	Joln	ystei
						ation		ad	ents		0 62	SC K	gird		ault	Syst	ulve	bear	rach	Le D	eam	on a	5	5	lon	ge s
						pun	8	slor	Ē	5	verl	shide	Ë	22	- - -	ble	8	SSO	d b	arin	geb	ulat	rfac	rape	pans	eula
						<u>۳</u>	III I	Erc	4 -	E a	ucti	SI.	Be	E .	I. Ar	S	E .	ð	X	8		S. Ins	l. Su	C. Pa	Ě.	D.
10		Material	Quality	Specific codes	Unit		1.4	1.1	m	3.	3.3	4	4.3	4	4.4	4.5	4.6	5.1	5.2	6.1	6.3	6.3	6.4	6.9	6.6	6.3
12		1. Concrete	1.1 C25/30	XC2; CEM II/A-M(S-LL) 42,5 XC3, XC4, XF2, XD1; CEM II	ma Im3				67,0		-	0,5														
13			1.3 C45/55	XC3, XC4, XF4; CEM II/A-M	m3																					
14			1.4 C55/67	XC4, XS3, XF4; CEM II/A-M(: m3						_															
16			1.5 C55/67 "Element Concrete" 1.6 Self Compacting Concrete SCC C55/67	XC3, XC4, XF4; CEM II/A-LL XC4, XS3, XF4; CEM II/A-LL	. m3								-	1												_
17			1.7 Reinforced concrete pile C40/50	XC2; CEM II/A-LL 42,5 R	m3																					_
18	5	2. Construction Steel	2.1 S355NL		ton							1,3			20,5									7,3		
20	mpa		2.3 1.4404		ton	II —																				_
21	CAL		2.5 S355K2W (weathering steel)		ton																					
22	or L	3. Reinforcement steel	3.1 A500HW		ton				10,0																	
23	Maj		3.2 B600KX (1.4301) Cold-rolled		ton								-													
25		4. Prestressing steel	4.1 St 1640/1860		ton									1												
26		1	4.2 Cables (Cable stayed and Suspension brid	ges)	ton	11																				
27		5. Timber	5.1 Sawn timber 5.2 Chus laminated timber		m3						-	56,4			50.2											
29		6. Asphalt	6.1 Asphalt concrete [AC 16/120]		m3							0,1			55,5											
30			6.2 Stone Mastic Asphalt [SMA 16/20]		m3	11																	11,5			
31		7 Waternsoofing	6.3 Polymer Modified Mastic Asphalt [PMMA 1]	5/80]	m3	∥——								1								220.0				
33		7. Waterprooning	7.2 Epoxy (thickness 6 mm)	miny	m2	11																229,0				
34			7.3 Rubberized bitumen lotion (0,2 kg/m2)		m2	11																				
35	Ħ		7.4 Asphalt Mastic (thickness 20 mm)		m2	11																				
37	bad	8. Others	8.1 Zinc coating (100 µm)		m2 m2	11																				_
38	Ain		8.2 Paint EPZn(R)EPPUR320/5-FeSa 2(1/2) (th	nickness 320 µm)	m2									1	700,0											
39	2		8.3 Glass		kg									1												
40	Mino		8.5 Salt impregnation (60 kg/m3)		m3							9.0			1,8											
42	-		8.6 Acryl (Plexiglass)		m3							0,0														
43			8.7 Polycarbonate (Plexiglass)		m3																					
44		Ark1 Input choose	5.6 Mastic (PEH)	Impact matrix	Kg Of		P	EP	ED	LITT		NC	ET I	Ecoloria	ot Eng	TON M	anuSat	CarElea	• 1+ H							111
14 4	- PIC	Aiki _ input shee	input tranc _ Results _ Results energy	Junpact matrix _ Gwp	1 01	1 1	u _	LP _	FU	_ nit	111	me 1	E1	cconver	in _ the	May Mi	enuser	carriee	17							11

BridgeLCA Input: Transportation of materials

Ś	Exce	el Fi	le Ed	dit V	iew l	nsert	Form	at T	ools	Data	Window	v Help	\$			<u>a</u> 3	👸 🦷 🚸	A (•) *	(Fullade	t) ons	. 2. mai 20:58	Helge	Bratteb	a Q
0	0													🚊 Bridge L	CA test.xl	sx								-	
-	1 10	AD	AE	AE	AC		AV		A.1.4	AN	AD	Sheets	CI	harts S	martArt Gra	phics	WordArt	P PD	D DE	E PLI E	DI	PV PI	DA4	Close FL	RO F
	AC	AD	AE	AF	AG	AI	AK	AL	AM	AN	AP	AR	AI	AV	A AX	AAZ	В ВВ	R RD	B BF	E BH E	BJ	BK BL	BM	BN	BO
2									1																
3									1																
5																									
7	Construe	ction				OR&M		End of L	fe																
									1																
9		Cons	struction	work		OR&M		E	φr			Tran	sportation ga	te to site	т	ransportation C	08M	т	ransportation E	EOL		Calculati	on factors		
									-															sult	
				metn	slop				ery	2												res		defa	
				bank	t and				acov	cove	s	(ji)	Ê	ĵ	(Î	Ĵ	Ê	Ê	(ji	Ê		lit va	essei	esse	
	ž		ock	t, em	emer		5	Ę	rtal	3A re	uno	difip (my (ain (ship () fui	aln (difts	my (ain (i		deta	lickn	lickn	
	OM U	tions	tion	men =	nforc		noliti	nel	mat	ener	alan	u	ion	ion t	ion	ion le	lont	lo	ion I	ion t	nsity	skt y,	yerti	yert	
	uctio	cava	Cava	ack fi	il reli tion		o der	als to	als to	als to	nater	ortat	ortat	ortat	ortat	ortat	ortat	ortat	ortat	ortat	alde		al/La	al/La	
10	onstr	2. Ex	3. Ex	1. En	2. So rotect		put t	ateri	ateri	ateri	otal n	ansp	ansp	ansp	ransp	ansp	ransp	ransp	ansp	ansp	ateri	nit	ateri	alues	뉟
11	0	-	,	6 10	ND			2	67,5	2	67,5	-	20,0			F		Ţ	10,0		2,38	2,38 ton/m3	2	25	
12											0,0								_		2,38	2,38 ton/m3			
14					-				1		0,0										2,38	2,38 ton/m3			
15						- 1			-		0,0										2,38	2,38 ton/m3 2,38 ton/m3			
17									00.4		0,0		100.0						100.0		2,38	3 2,38 ton/m3			
19						0,2			29,4		29,4		190,0						160,0						
20											0,0						_								
22									10,0		10,0		160,0					_							
23						- 1					0,0					- 1									
25	 										0,0														
27	45,0									101,0	101,4		70,0						160,0		0,50	0,50 ton/m3			_
28					_	- 1			-	59,4	59,4 0,0		280,0								0,55	0,55 ton/m3 2,40 ton/m3	0,05	0.05	m
30						67,1		78,5			78,5										2,40	ton/m3	0,05		m
32	<u> </u>					Н		-		_	229,0										2,40	2,17, ton/m3	0,05	0,02	m
33											0,0	/									2400,00	2400,00 kg/m3	0,01	0,01	m
35									1		0,0										0,00	0,00 ton/m3	0,02	0,02	m
36									<u> </u>		0,0		-								2400,00	2400,00 kg/m3	0,01	0,01	m
38						4200,0			1		4900,0	/					-							320,00	um
<u>39</u> 40											0,0										0,00	0,00 ton/kg			
41									1		68,3	/	-		-	-	/	1	-						
43											0,0						-								
44		Arki	Inner	cheet -	Input tro	fic Peru	ite De	sulte or	arou In	anact ma	0,0	000	AP			HINC		Convent Fr	Maria	Set CarElean	0,00	0,00 ton/kg			117
		MIKI	mput	sneet	input tra	ne Resu	Re Re	auro en	eigy _ in	ipace ma	UNA UNA	1 ODP	Ar		e j nic	_ mine		Convent En	ergy _menu:	Jul Carrieet	1				

BridgeLCA Input Traffic Sheet (due to bridge closure)

	Excel F	ile Edit	View	Insert	Format	Too	ols Da	ita Wi	indow H	lelp	9		a 🖏	•	* @ 🤶	•••) 📧 🗨	(Fulladet)	ons.	2. mai 20:45	lelge Brattebø	Q
• •	0										🔄 Br	idge LCA test.x	lsx	-	_					Close Full	Scree
\sim	٨		R		C		D	E	F	heets	Charts	SmartArt Gr	aphics V	VordArt	1	K		M	N	0	1
ĩ	Fuel Consu	motion In	anacts o	f Traffic (Congestion	durin	og main	tenance	and deto	ur	G				J	K	-	14	IN IN	U	
2 3 4 5		Bridge	ipueto e		¢		*	D	Detour	This scen The	is a simplified arios. calculator cons	calculator for v	ehicle fuel co	nsump	otion for thr aths. A and	ee possible b B are on each	ridge end of the				
6 7 8 9					\$		×	c		bride road Whe close	ge. C and D are Is need to be us en the bridge is ed, the detour i	access points to sed to access th open two ways s accessed thro	o the detour a e actual deto , there is no d ugh waypoint	ur road letour. ts C and	e might be s I. If the bridge d D.	ituations whe e is open only	ere smaller one way or				
10		Bridge is d	pen			2 way	ys vs	4		Fuel	consumption i	s calculated on	the basis of	speed.	distance. ar	nd traffic load	L.:				
12								_	Distance [km]	Average Vehicle Speed (km/h)	Average Daily Traffic [Vehicles]	Vehicle Trave Time (minutes	і і	Traffic Load	Total Petrol Consumed [kg]	Total Diese Consumed [I	l (g]	Average I/100km petrol	Average I/100km diesel	
13		Bridge			A	\$		В	0,25		50	1000	0,3	(Congested	2917	2540		32,4	24,4	
14		Detour ac	cess A		A	×		С	0,80		60	0	00	Fr	ree Flowing	0	0		0,0	0,0	
15		Detour			C	×		D	1,00		60	0	00	Fr	ree Flowing	0	0		0,0	0,0	4
17		Detour ac	cess B		В	×		D	1,20		50	0	~~	H Fr	ree Flowing	0	0		0,0	0,0	4
19 20 21 22		Total Rout	ie ie		A B	→ →		B A	0,25		50 50]	1								
23		Vehicle	Con		Fuel	_	Mix	-	Emissions		Petrol	Diese		line CC		0000					
24		Passenger	Car		Diecel	_	50 %	-	Rg CO2		172959	8015		kg CC	JZ-eq	9800,7	6 3	1,/			
26		Bus	Car		Diesel		0%	-	a HC	-	23479	17778		Ng SC	72-E4	10,0	<u> </u>	0,5			
27		Lorry			Diesel		0%		g NO		21117	60953	1								
28																					
29								_													
30																		_			+
32												-					-				
33									-	-											+
34																					
35																					
36																					
31																					-
20												_									-
40																					-
41												-									+
42												-									
43													1111-111								
4.4.1	Ark1	Input she	eet Input	trafic Re	sults Resu	ts energ	gy _ Impa	ct matrix	CWP	ODP	AP EP	FD HT	C HTNC	ET	Ecoinvent	nergy MenuSet	CarFleet +				-

ETSI Extra traffic generation model

Bridge scenario	Graphic	Description			
0	$\begin{array}{c} B \\ \star \end{array} \begin{array}{c} C \\ B \end{array}$	Bridge is closed, all traffic goes through detour path	Traffic Load Congested	Decription At low speeds, traffic will have high RPM/rapid gear change due to start- stop motion. This causes high fuel consumption.	Graphic image
1	$\begin{array}{c c} B \rightarrow D \\ \hline \uparrow & \checkmark \\ A \leftarrow C \end{array}$	Bridge is open one way, other traffic takes detour path	Average Free Flowing	Average traffic (40-70 km/h) will have smooth motion/little gear change. Low RPM/high gears lead to low fuel consumption for most vehicles High speed traffic (>70 km/h) will have slightly	
2	B × D ↓ × × A × C	Bridge is open both ways, no traffic uses detour path		higher RPM than average traffic, and therefore higher fuel consumption.	 16

BridgeLCA Impact matrix (Ecoinvent or other data)

0				Bridge LCA test fo	r gammel PC.xls				
		s	heets	Charts Smar	tArt Graphics W	ordArt			
Δ	B		F	F	G	H	1	1	K
-	Impact matrix				0			,	IN IN
			_						
	Emission data source:	Norway	_	Observational antication	and an and a second second				
				Climate change	Ozone depletion	Terrestrial acidification	Freshwater eutrophicatio	Fossil depletion	Human toxicity, cancer
	Material	Quality		kg CO2 eq	kg CFC-11 eq	kg SO2 eq	kg P eq	kg oil eq	CTUh
	1. Concrete	1.1 C25/30	m3	2,61E+02	8,84E-06	6 4,44E-01	1,37E-02	2,57E+01	1,11E-0
		1.2 C30/37	m3	2,89E+02	9,77E-06	5 4,98E-01	1,56E-02	2,93E+01	1,23E-0
		1.3 C45/55	m3	2,89E+02	9,77E-06	6 4,98E-01	1,56E-02	2,93E+01	1,23E-0
		1.4 C55/67	m3	2,89E+02	9,77E-06	5 4,98E-01	1,56E-02	2,93E+01	1,23E-0
		1.5 C55/67 "E	m3	2,89E+02	9,77E-06	6 4,98E-01	1,56E-02	2,93E+01	1,23E-0
ials		1.6 Self Comp Close Full Screen C55/6/	ma	2,89E+02	9,77E-00	4,98E-01	1,56E-02	2,93E+01	1,23E-0
ater	2 Construction Steel	2.1 C255NI	top	4,04E+02	1,46E-0	8,77E-01	8,54E-02	6,77E+01	2,85E-0
Ĕ	2. Construction Steel	2.1.000014	ton	1,09E+03	5,89E-0	0,02E+00	1,11E+00	0,15E+02	2,25E-0
pac		2.4.1.4301	ton	4,72000	2,335-04	2,200+01	2,300+00	1,400+03	3,71E-0
Ē		2.5 S355K2W (weathering steel)	ton	1,89E+03	5,89E-05	6,02E+00	1,11E+00	6,15E+02	2,25E-0
5	3. Reinforcement steel	3.1 A500HW	ton	1,45E+03	6,01E-05	5 4,74E+00	8,72E-01	4,81E+02	2,03E-0
L L		3.2 B600KX (1.4301) Cold-rolled	ton	4,72E+03	2,33E-04	4 2,20E+01	2,30E+00	1,40E+03	3,71E-0
Maj	A Prostronging steel	3.3 B600KX (1.4301) Hot-rolled	ton	4,72E+03	2,33E-04	4 2,20E+01	2,30E+00	1,40E+03	3,71E-0
	4. Presuessing steel	4.2 Cables (Cable staved and Suspension bridges)	ton	1,45E+03	6.01E-05	5 4,74E+00	8.72E-01	4,81E+02	2,03E-0
	5. Timber	5.1 Sawn timber	m3	8,54E+01	8,04E-06	6 4,87E-01	4,33E-02	2,83E+01	3,01E-0
		5.2 Glue laminated timber	m3	2,23E+02	2,19E-05	5 1,30E+00	1,20E-01	7,90E+01	4,90E-0
	6. Asphalt	6.1 Asphalt concrete [AC 16/120] 6.2 Stone Mastic Asphalt [SMA 16/20]	m3	2,10E-01 2,10E-01	8,17E-08	5,72E-04	1,45E-05	1,56E-01	4,47E-1
		6.3 Polymer Modified Mastic Asphalt [PMMA 16/80]	m3	2,10E-01	8,17E-08	5,72E-04	1,45E-05	1,56E-01	4,47E-1
	7. Waterproofing	7.1Asphalt membrane (double) (thickness 20 mm)	m2	1,16E+00	3,62E-07	7 5,76E-03	9,49E-04	1,13E+00	3,38E-1
s		7.2 Epoxy (thickness 6 mm)	m2	2,72E+00	3,22E-08	3 1,56E-02	9,06E-05	1,16E+00	6,69E-1
lial		7.3 Rubberized bitumen lotion (0,2 kg/m2)	m2	4,05E-01	1,91E-07	7 2,61E-03	1,23E-04	6,17E-01	2,75E-1
nate		7.5 Polyurethane (thickness 8 mm)	m2	4.31E+00	1,18E-07	7 1.61E-02	5.76E-04	2.10E+00	2.84E-1
ะ ช	8. Others	8.1 Zinc coating (100 μm)	m2	6,20E+00	7,83E-07	7 5,24E-02	7,12E-03	1,96E+00	2,02E-0
ba		8.2 Paint EPZn(R)EPPUR320/5-FeSa 2(1/2) (thickness 320 µm)	m2	6,72E+00	6,91E-08	3,87E-02	2,09E-04	2,88E+00	7,26E-1
Li V		8.3 Glass	kg	9,79E-01	8,82E-08	3 7,84E-03	1,42E-04	2,76E-01	1,57E-1
L L		8.5 Salt impregnation (10kg/m3)	m3	3.13E+00	1.24E-06	5 2.18E-02	5.08E-03	1.33E+00	7,81E-1 7,85E-0
DC		8.6 Acryl (Plexiglass)	m3	8,38E+00	4,10E-09	3,75E-02	3,35E-04	3,13E+00	4,25E-1
ž		8.7 Polycarbonate (Plexiglass)	m3	7,78E+00	2,58E-06	6 2,25E-02	2,11E-04	2,38E+00	6,20E-1
		8.8 Plastic (PEH) 8 X	kg	1,93E+00 0,00E+00	7,08E-10	0 5,91E-03 0 00E+00	2,69E-05 0.00E+00	1,70E+00 0.00E+00	1,49E-1 0.00E+0
	9. Energy	9.1 Diesel	1	0.091554292	1,14093E-08	0.000741726	4,51E-06	0.032129875	7.30594E-1
		9.2 Electricity	kwh	0,170437939	1,25297E-08	0,000434949	3,41E-05	0,043887538	7,11843E-1
ors	10.01	9.x		0	() (0,00E+00	0	1 000005 1
raci	10. Blasting	10.1 Blasting	m3	2,519070706	1,7189E-0	0,339290367	5,53E-04	0,541465272	1,09388E-1
Ĭ	Transportation	11.2 Material transportation truck	tkm	0,010715159	2 64968E-08	0,000218016	1,072-00	0,003639569	3 62105E-1
Ē		11.3 Material transportation train	tkm	0,039440346	2,859E-09	0,000205203	2,51E-05	0,011982495	2,23969E-1
le le		11.4 Transportation car	pkm	0,180947278	2,4488E-08	0,000593933	2,5173E-05	0,062963828	5,79262E-1
0		11.5 Petrol fuel consumption, Passenger vehicle mixed fleet	kg	3,360251	9	0,00362	0	0	
		The Dieser rue consumption, venicle mixed fleet	ĸg	3,36724		0,012	0	0	
	Concrete	Landfill	m3	1 745+01	5 235-00	6 1.08E-01	1 38E-03	1 11E+01	3 145-0
-	Front Page Input sheet	Input traffic Results Results energy Impact matrix GWP	ODP	AP EP F	D HTC HTNC	ET Ecoinvent En	ergy MenuSet CarFleet	LITE-OI	0.142-0

Ε

BridgeLCA TŠI Ecoinvent, national or project specific data

É	Excel File Edit View In	sert Format Tools Data Window Help 🐓		G	• • • •	? ◀) 🗷 💽	(Fulladet) lør.	12. mai 19:51	Helge Brattebø	q
• •	Θ	Bridg	e LCA test for g	ammel PC.xls						
		Sheets Chart	ts SmartAr	t Graphics V	VordArt					
\diamond	В	C	E	F	G	Н	1	J	K	L
3										. In
4					Climate cha	ange (GWP)		-	-	4
5			Unit	Ecoinvent	Denmark	Finland	Norway	Sweden	Product spesific	
			ed							
		Close Full Screen	02	-	-	_		-	_	
6	Motorial	Quality	0							
0			¥ Kar/ma2	0	S	S	S	S	ى N	4
0	1. Concrete	1.1 C25/30	kg/m3	2,01E+02						
0		1.2 030/37	kg/m3	2,89E+02						
9		1.3 C45/55	kg/m3	2,89E+02						-
10		1.4 C55/67	kg/m3	2,89E+02						-
11		1.5 C55/67 "Element Concrete"	kg/m3	2,89E+02				-		
12		1.6 Self Compacting Concrete SCC C55/67	kg/m3	2,89E+02						
13		1.7 Reinforced concrete pile C40/50	kg/m3	4,04E+02						
14	2. Construction Steel	2.1 S355NL	kg/ton	1,89E+03						4
15		2.2 1.4404	kg/ton	4,72E+03						
16		2.3 1.4301	kg/ton	4,72E+03						
17		2.4 S355K2W (weathering steel)	kg/ton	1,89E+03						
18	3. Reinforcement steel	3.1 A500HW	kg/ton	1,45E+03						
19		3.2 B600KX (1.4301) Cold-rolled	kg/ton	4,72E+03						
20		3.3 B600KX (1.4301) Hot-rolled	kg/ton	4,72E+03						-
21	4. Prestressing steel	4.1 St 1640/1860	kg/ton	1,45E+03						
22	C. Timber	4.2 Cables (Cable stayed and Suspension bridge	kg/ton	1,45E+03						
23	5. Timber	5.1 Sawn timber	kg/m3	8,54E+01						
24	6 Apphalt	5.2 Glue laminated timber	kg/m3	2,232+02			1			
25	o. Asphalt	6.2 Stone Mastic Asphalt [SMA 16/20]	kg/m3	2,10E-01						-
27		6.3 Polymer Modified Mastic Asphalt [PMMA 16/	kg/m3	2,10E-01						1
28	7 Waterproofing	7 1Asphalt membrane (double) (thickness 20 m	kg/m2	1.16E+00						
29		7.2 Epoxy (thickness 6 mm)	kg/m2	2.72E+00						1
30		7.3 Rubberized bitumen lotion (0,2 kg/m2)	kg/m2	4,05E-01						1
31	Front Page Input sheet Input tra	T 4 Asphalt Mastic (thickness 20 mm)	ka/m2		ET Ecoinver	t Energy Menus	Set CarFleet	1		1

BridgeLCA ETSI Results: Size of environmental impact

🗯 Excel	File Edit View Insert Fo	rmat Tools Data Wi	ndow Help 🐓		🖏 🖣 🚸 🔿 🕇	(Fulladet)	lør. 12. mai 18:52 Helge Brattebø	, q
000			📄 Bric	dge LCA test for gammel PC.xls				
			Sheets Ch	arts SmartArt Graphics	WordArt			
♦ A	В	C D	E	F	G	Н	I J K	E
1 2 3 4	AGGREGATED RESULTS Overall LCIA results - Midpoin	t results / Normalized re	sults / Weighted resul	ts				
5	Emission category	Equivalent	Method	Midpoint results (ka ea.)	Normalised (PE)	Weighted (PE)		
6	Climate change	GWP kg CO2 eg	ReCiPe	1,29E+05	1.15E+01	1,15E+01		
7	Ozone depletion	ODP kg CFC-11 eg	ReCiPe	5.56E-03	2.53E-01	2.53E-01		
8	Terrestrial acidification	AP kg SO2 eg	ReCiPe	4.45E+02	1.29E+01	1,29E+01		
9	Freshwater eutrophication	EP kg P eq	ReCiPe	5,30E+01	1,28E+02	1,28E+02		
10	Fossil depletion	kg oil eg	ReCiPe	3,49E+04	2,10E+01	2,10E+01		
11	Human toxicity, cancer	Ose Full Screen CTUh	USEtox	3,95E-05				
12	Human toxicity, non-cancer	HTNC CTUh	USEtox	5,56E-06				
13	Ecotoxicity	ETX CTUe	USEtox	1,06E+03				
14								
15	Midpoint I CIA results - Distrib	uted over bridge life over	le stages					
15	Emission esteren	Led over bridge me cyc	Mathad	Motorial Draduction	Construction	OPSM	EQI Total	
17	Climate change	CW/P kg CO2 og	BaCiBa	Material Production	4 37E+02	1 415+04	2 26E+02 1 20E+05	
18	Ozono deplotion	ODP kg CEC 11 og	ReciPe	5 475-03	5.875.05	2 845 05	3 885.06 5 565.03	
10	Terrestrial esidification	AD kg CFC-11 eq	Recipe	2,005+02	1,672-00	2,04E-00	1465+00 4455+00	
20	Freehuster outraphication	Kg SO2 eq	Recipe	5,992+02	E 72E 02	4,245-01	1,402100 4,452102	
20	Freshwater eutrophication	ADD kg P eq	Recipe	5,292+01	5,73E-02	2,032-02	1,702-02 5,302+01	
21	Human taxisity server	ADP Kg Sb eq	Recipe	3,402+04	1,522+02	7,34E+01	3,492+04	
22	Human toxicity, cancer		USEIOX	3,922-05	1,20E-07	0,30E-00	3,34E-08 3,95E-05 8,57E-09 5,56E-06	
24	Ecotoxicity	ETX CTUS	USEtox	1.05E+03	9 12 - 01	4.465-01	5.98E-01 1.06E+03	
25	Ecoloxicity		OSEIOX	1,052103	3,122-01	4,402-01	3,302-01 1,002.03	
26								
27 28	Normalised L	CIA results			Relative midpoint L	CIA results		
29	2.005+02		100 %					
30	2,002+02		100 %				= EOL	
31	1 80E+02		98.94					
32	1,002102		56 /6				OR&M	
33	1.60E+02		05.9					
34	1,002.02		90 %				Construction	
35	- 140E+02							
30			5D 94 %				Material Production	
37	¥ 1.20E+02							
30			EP 92 %					
39	1.00E+02		AP					
41	<u>g</u>		90 %					
41	5 8.00F+01		ODP					
42	2		GWP 88 %					
43	6.00E+01							
45	0,000.01		86 %					
46	4.00E+01							
47	,,		84 %					
48	2.00F+01		Constant of the second s					
49	2,502.01		82 %					
50	0.00E+00			GWP ODP AP	FP ADP	HTC HTNC	FTX	
51						ine inte		
14 4 P PI	Front Page Input sheet Input traffic Resu	Its Results energy Impact mat	rix GWP ODP AP	EP FD HTC HT	NC _ ET _ Ecoinvent _ En	ergy MenuSet CarFlee	et]	00

BridgeLCA Results: Size of environmental impact

BridgeLCA Results: Size of environmental impact

ETSI Results: Causes of impacts

K	Excel	File Edit	t View Insert Format	t Tools Data Wi	ndow Help	ý		🝪 🖣 🚸 🐵 奈 🌒 🖬	(Fulladet) lør. 12. mai	19:06 Helge Bratteb	øQ
	0	Contraction in the second				Bridge LC	CA test for gammel PC.x	ls			
					Sheets	Charts	SmartArt Graphics	WordArt			
\diamond	A		B	C		D	E	F	G	Н	1
130											
131		DET	AILED RESULTS	 Midpoint value 	ues (witho	out Norma	alization and W	eighting)			
132							1		T		
122					0.475		Material				_
133			GWP		GWP		Production	Construction	UR&M	EOL	PI
135		100 %		Concrete	Concrete		13 68 %	0.00 %	0.00 %	0.00 %	eu
136		80 %		Construction steel	Constructio	on steel	42.73 %	0.00 %	0.00 %	0.00 %	
137		60 %	Close F	ull Screen inforcement steel	Reinforcem	nent steel	11.22 %	0.00 %	0.00 %	0.00 %	
138		40 %		Prestressing steel	Prestressin	g steel	0,00 %	0,00 %	0,00 %	0,00 %	
139		20 %		Timber	Timber		14,02 %	0,00 %	0,00 %	0,00 %	
140		0%		Asphalt	Asphalt		0,00 %	0,00 %	0,00 %	0,15 %	
141			tos Me non non	Waterproofing	Waterproof	ing	0,21 %	0,00 %	0,00 %	0,00 %	
142		60,00	JCC STRUCE ORC	Others	Others		3,89 %	0,00 %	0,00 %	0,00 %	
143		rialPlu	Con	Energy	Energy		0,00 %	0,03 %	0,01 %	0,02 %	
144		Nate.		Blasting	Blasting		0,00 %	0,00 %	0,00 %	0,00 %	
145					Transporta	tion	2,79 %	0,31 %	10,94 %	0,00 %	
140				. Concerns]		Material		1	1	
147			ODP	Concrete	ODP		Production	Construction	OR&M	EOL	P
148				Construction steel			%	%	%	%	ec
149		100 %		Reinforcement steel	Concrete		10,73 %	0,00 %	0,00 %	0,00 %	
150		80 %		Prestressing steel	Constructio	on steel	30,95 %	0,00 %	0,00 %	0,00 %	
151		40 %		Timber	Reinforcem	nent steel	10,81 %	0,00 %	0,00 %	0,00 %	
152		20 %		Asphalt	Prestressin	ig steel	0,00 %	0,00 %	0,00 %	0,00 %	
153		0%		Waterproofing	Timber		31,62 %	0,00 %	0,00 %	0,00 %	
154			10, Mrs Par Tar		Asphalt		0,02 %	0,00 %	0,00 %	0,00 %	
155		3	Juct struct ORD E	= Others	Vvaterproof	ing	1,49 %	0,00 %	0,00 %	0,00 %	
157		(a)PI	CON	Energy	Enorgy		2,49 %	0,00 %	0,00 %	0,00 %	
158		Mate.		Blasting	Blasting		0.00 %	0,00 %	0,00 %	0.00 %	
159				Transportation	Transportat	tion	10.24 %	0.97 %	0.48 %	0.00 %	
160					1						
			AP				Material				
161					AP		Production	Construction	OR&M	EOL	Pi
162		100 %		Concrete			%	%	%	%	ec
163		80 %		Construction steel	Concrete		6,74 %	0,00 %	0,00 %	0,00 %	
164		60 %		Reinforcement steel	Constructio	on steel	39,53 %	0,00 %	0,00 %	0,00 %	
165		40 %		Prestressing steel	Brootrocer	ient steel	10,67 %	0,00 %	0,00 %	0,00 %	
167		20 %		Timber	Timbor	ig steel	23.57 %	0,00 %	0,00 %	0,00 %	
168		0%		Asphalt	Asphalt		23,57 %	0,00 %	0,00 %	0,00 %	
14.4.1	FI Fro	nt Page _ Inpu	it sheet Input traffic Results	Results energy 🚽 Impact mat	rix GWP O	DP AP	EP FD HTC F	HTNC ET Ecoinvent Energy	MenuSet CarFleet		00 //

ETSI Results: Causes of impacts

🗯 Excel	File Edit View I	nsert Format Tools	Data Window H	elp 🐓		🍪 🎙 🚸 🚇 🐔		(Fulladet) lør. 12. mai	19:06 Helge Brattebe	øQ
000	and the second		and the second second	📄 Bridge	LCA test for gammel	PC.xls				
			S	heets Charts	SmartArt Graphi	cs WordArt				
♦ A		В	C	D	E	F		G	Н	
130								•		
131										
132										
			G	:\//D						
133			G					OR&M	EOL	P
134								%	% 0.00.%	ec
135								0,00 %	0,00 %	
137								0,00 %	0,00 %	
138	100.01					Concrete		0.00 %	0.00 %	
139	I 100 %							0.00 %	0.00 %	
140								0,00 %	0,15 %	
141	00.0/					Construction st	teel	0,00 %	0,00 %	
142	80 %							0,00 %	0,00 %	
143						Reinforcement	stool	0,01 %	0,02 %	
144	60 %					- Kennorcement	steer	0,00 %	0,00 %	
145	00 /0							10,94 %	0,00 %	
146	10.04					Prestressing ste	eel			
147	40 %							OR&M	FOL	P
148								%	%	ec
149	20 0/					Timber		0.00 %	0.00 %	
150	20 %							0,00 %	0,00 %	
151						Acabalt		0,00 %	0,00 %	
152						- Asphalt		0,00 %	0,00 %	
153	0 /0							0,00 %	0,00 %	
154				•		Waterproofing		0,00 %	0,00 %	
155		. ~	30.	1	\sim	Materproofing		0,00 %	0,00 %	
157		X ¹⁰	X A	` {	\mathcal{S}			0,00 %	0,00 %	
158		NUC N	y or			Others		0.00 %	0.00 %	
159			•					0,48 %	0.00 %	
160		in the				Energy				
	<u>نې</u> ا	CO CO				Energy				
161	and the	-						OR&M	EOL	Pi
162	xe.					Blasting		%	%	ec
163	No					Diasting		0,00 %	0,00 %	
165	~							0,00 %	0,00 %	
166						Transportation		0,00 %	0,00 %	
167								0,00 %	0,00 %	
168								0.00 %	0.27 %	
Fron		× ×		~ <u> </u>	· · · ·	* * *	A	enuSet CarFleet		11.

BridgeLCA ETSI Results: Energy consumption

	Excel	File Edit View	Insert Format Tools D	ata Window	Help 🐓		🎲 🦷	* @ ? •	🔊 📧 💽 (Fulla	adet) lør. 1	2. mai 19:1	5 Helge B	Brattebø	Q
0	0				📄 Bridge	LCA test for gamme	PC.xls							
					Sheets Charts	SmartArt Graph	ics WordA	Art						
\$	A	B	С	D	E	F	G	Н	1	J	K	L		M
23		RESULTS FROM	ENERGY CALCULATIO	NS		7								
4		Energy	Unit	MJ	%									
5 6 7		Non-renewable energy	Fossil energy Nuclear Biomass (NR)	2,56E+06 2,85E+05 3,22E+00	61,7 % 6,9 % 0,0 %) }								
8 9 10		Renewable energy	Biomass (R) Wind, solar, geothermic Hydropc	1,26E+06 5,28E+03 4,31E+04	30,3 % 0,1 % 1,0 %									
11		Total	Close Full Screen	4,15E+06	100,0 %									
12														
14			Energy consumption (MJ)							1				
						1.01		Wind, solar,						
15		Material / activity	9 78E+04	7.28E+04	1 95E+04	Biomass (NR) 2 37E-01	Biomass (R) 6 17E+02	geothermal 6.64F+01	4 76E+03	-				
17		Construction Steel	8,31E+05	7,54E+05	5,86E+04	3,59E-01	5,02E+03	1,06E+03	1,16E+04					
18		Reinforcement steel	2,31E+05	2,02E+05	2,34E+04	1,21E-01	1,57E+03	4,28E+02	3,84E+03					
19		Prestressing steel	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00					
20		Timber	1,59E+06	2,64E+05	7,77E+04	7,40E-01	1,24E+06	1,32E+03	9,95E+03					
21		Waterproofing	1,94E+05	1,80E+05	9,31E+03	4,88E-01	1,89E+03	5,38E+01	2,11E+03					
23		Others	3.32E+05	2.89E+05	3.61E+04	9.18E-02	2.11E+03	5.42E+02	4.41E+03					
24		Energy	2,77E+04	2,70E+04	5,38E+02	3,57E-02	2,30E+01	9,97E+00	7,24E+01					
25		Blasting	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00					
26		Transportation	3,08E+05	2,98E+05	8,33E+03	5,00E-01	2,85E+02	1,02E+02	1,27E+03					
27		Sum	4,15E+06	2,56E+06	2,85E+05	3,22E+00	1,26E+06	5,28E+03	4,31E+04					
28										ר				
30			Energy carriers (share of consu	mption)		Energy for	materials/activi	ities						
32			1%				%	Con	crete					
33			0%			9%		Con	struction Steel					
35						1%		Beir	oforcement steel					
36				Fossil energy		8%	20 %	Pro	stressing steel					
37		30 %		Nuclear				= Pie	scressing sceer					
30				Biomass (NP)		13 %		Tim	ber					
40				- biomass (INK)			6 %	6 Asp	halt					
41				Biomass (R)				0% Wat	terproofing					
42			62 %	Wind, solar, ge	othermic	5%		= Orth						
43		0% 7%		Hydropower				= Oth	ers					
45							38 %	= Ene	rgy					
46								Blas	sting					
47								Tran	nsportation					
48														
50	F FL E	ront Page Input sheet Inpu	ut traffic Results Results energy	Impact matrix J GWP	ODP AP	EP FD HT	C _ HTNC _	ET Ecoinvent I	Energy MenuSet C	arFleet				00 //

ETSI Results: Energy consumption

ETSI Results: Energy consumption

, ek	Excel	File	Edit	View I	nsert	Format	Tools	Data	Window	Help	ý					S 7	*	<u>ب</u>	≷ 4 0)	*	(Fi	ulladet)	lør. 12	2. mai	19:15	Helge B	rattebø	Q
0	0					-						Bridge L	CA test	for gamm	el PC.xl	s		a france					Sec. 10				-	
•	A		В			С			D	Sneets	E	Charts	Sm	F	hics	G	Art	н			1		J		K	L		M
2		RES	ULTS	FROM I	INERG	Y CA																						
3		Energ	y		Jnit					Ene	rgy	for	ma	teria	ls/a	ctiv	itie	S								_		
5				ł	Fossil ene	rgy																						_
									1	Energy	carr	iers ar	nd rela	ated ma	ateria	l/activ	vity											
										0,						•	•											
	3,00E-	+06]																							2			
																									(Concrete		
	2,50E-	+06 -			_																				. (Constructi	on Steel	
																									F	Reinforcen	nent stee	el
	2,00E-	+06 -																								Droctroccir	a stool	
																									- 1	restressi	ig steel	
Ξ	1,50E·	+06 -			-																					Timber		
																									= /	Asphalt		
	1,00E-	+06 -		-	-								_		_											Waterproc	ofing	
	,																									Others		
	5 00F	+05 -			-								_												_			
	3,002																									Energy		
	0 00F.	+00 -																					_	_		Blasting		
	0,001	100		Fossil			Nuclo	or		Diamas	c /ND	۰ ۱	Di	omacci	D۱	Mind		r	thorm	- -	Ц	drana	wor	1		Transporta	ation	
				LO22II			Nucle	ai		DIOIIIdS	s (INK	1	DI		Ŋ	VVIIIC	i, suid	i, geo	ulet III	ai	пу	ulopo	WEI					
47		-																										
48 49																						_						
14 4 1	FI FI	ront Page	Input s	heet Input	traffic _ R	esults Re	sults energ	y Impac	t matrix 🚽 G	WP O	DP	AP	EP	FD H	тс јн	TNC	ET	Ecoinver	nt 🕽 Ener	gy M	lenuSet	CarFlee						

Conclusions and recommendations

Bridge Life Cycle Optimisation

- BridgeLCA covers all the most important LCA issues for road bridges
 - The tool is flexible for use at various stages of the bridge planning and design process
 - Relevance of the life cycle phases
 - Materials production is well covered
 - Construction phase needs good empirical data input!
 - OR&M phase needs inputs from a good bridge life cycle plan
 - EOL phase is probably not very important
 - Recommendations
 - BridgeLCA to be tested on variety of bridges
 - Empirical data and experience to be collected
 - Database to be systematically improved