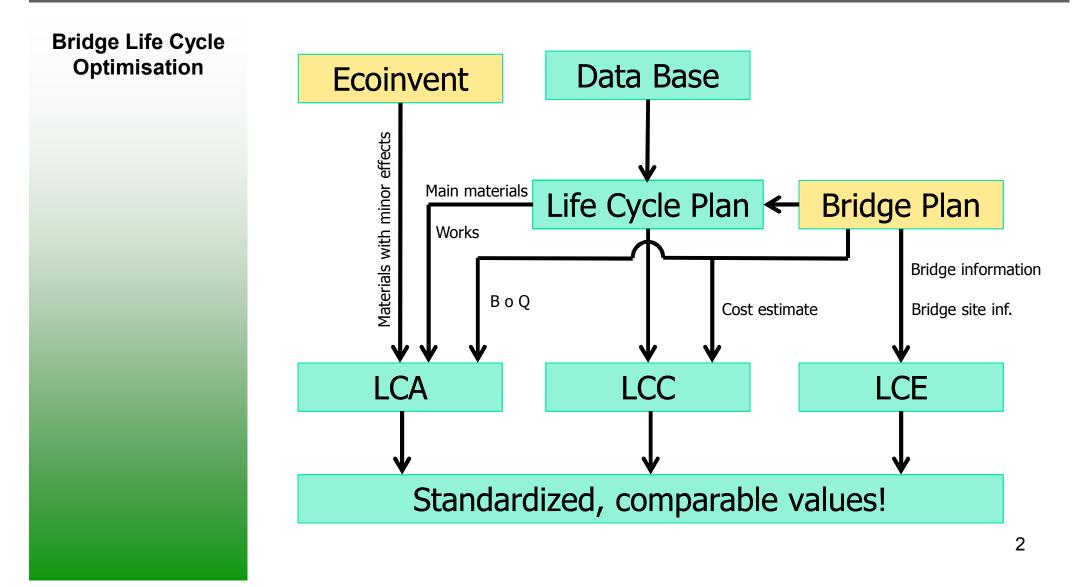


### Bridge Life Cycle Optimisation





### ETSI


New ways to include life cycle issues into design, decision making and procurement

Matti Piispanen Finnish Transport Agency



### **New Design Culture**

Bridge designer makes a life cycle plan and calculates the life cycle effects





#### **Data Base**

Bridge Life Cycle Optimisation From the data base designer gets life cycle information of bridge parts. Cost and duration times of actions are also given.

| Nomenclature |          | Title                           | Unit | Year of Action | Maximum delay | Unit cost of repair<br>% of |                   | Unit duration | Duration | Traffic disturbanc          |
|--------------|----------|---------------------------------|------|----------------|---------------|-----------------------------|-------------------|---------------|----------|-----------------------------|
| ETSI         | FIN      |                                 |      |                |               | €/unit                      | construction cost |               |          | (of the repair<br>duration) |
| 1            |          | FOUNDATION                      |      |                |               |                             |                   |               |          |                             |
| 1.1          | 4207     | Foundation slab                 |      |                |               |                             |                   |               |          |                             |
|              |          | 1 Patching the surface          | m2   | 100            | +25           |                             | 50%               | 0,1           |          |                             |
|              |          | * underwater, sea               |      | -50            |               |                             |                   | +0,1          |          |                             |
|              |          | * underwater, fresh water       |      | -25            |               |                             |                   | +0,1          |          |                             |
| 1.2          | 4201.2.1 | Excavation, soil                |      |                |               |                             |                   |               |          |                             |
| 1.3          | 4201.2.2 | Excavation, rock                |      |                |               |                             |                   |               |          |                             |
| 1.4          | 1320     | Pile                            | m    |                |               |                             |                   |               |          |                             |
| 1.4.1        | 1321     | Driven piles                    |      |                |               |                             |                   |               |          |                             |
| 1.4.1.1      | 1321.1   | Concrete piles                  |      |                |               |                             |                   |               |          |                             |
|              |          | 1 Repair                        |      | 70             | +30           |                             | 200%              | 0,05          |          | 25%                         |
|              |          | * design service life 100 years |      | +50            |               |                             |                   |               |          |                             |
| 1.4.1.2      | 1321.2   | Steel piles                     |      |                | -             |                             |                   |               |          |                             |
|              | 1 1      | 1 Repair                        |      | 70             | +30           |                             | 200%              | 0,05          |          | 25%                         |
|              |          | * design service life 100 years |      | +50            |               |                             |                   |               |          |                             |
| 1.4.1.3      | 1321.3   | Wooden piles                    |      |                |               |                             |                   |               |          |                             |
|              |          | 1 Repair                        |      | 50             | +20           |                             | 100%              | 0,05          |          | 25%                         |
| 1.4.2        | 1324     | Excavated piles                 |      |                |               |                             |                   |               |          |                             |
| 143          | 1325     | Bored piles                     |      |                |               |                             |                   |               |          |                             |

Data base is maintained nationally by the whole branch and in co-operation with other ETSI countries. It is distributed by road authorities.



### Life Cycle Plan

#### Bridge Life Cycle Optimisation

Bridge designer chooses bridge parts and plans the maintenance actions according to Data Base aiming for the most sensible service life

- When to go to the bridge and what actions to take
- What is the cost and duration of the visit
- How long the traffic is disturbed

| Life cycle plan |                                         |   |               |          |               |              |                     |                             |                     |                             |             |
|-----------------|-----------------------------------------|---|---------------|----------|---------------|--------------|---------------------|-----------------------------|---------------------|-----------------------------|-------------|
|                 | General information                     |   |               |          |               | Common costs | 21 %                |                             |                     |                             |             |
|                 | Project / name                          |   |               |          |               |              |                     |                             |                     |                             |             |
|                 | Design service life                     |   |               |          |               |              |                     |                             |                     |                             |             |
|                 | Bridge type                             |   |               |          |               |              |                     |                             |                     |                             |             |
|                 | Span length                             |   |               |          |               |              |                     |                             |                     |                             |             |
|                 |                                         |   |               |          |               |              |                     |                             |                     |                             |             |
|                 | Repair action                           |   | Unit Quantity |          | Unit duration | -            | 1st Repair<br>year= |                             | 2nd Repair<br>year= |                             | 3rd<br>year |
|                 |                                         |   |               |          |               |              | duration            | price                       | duration            | price                       | duration    |
|                 |                                         |   |               | [€/unit] | [days/unit]   |              | [days]              | VAT 0%, discount<br>rate 0% | [days]              | VAT 0%, discount<br>rate 0% | [days]      |
|                 | FOUNDATION                              |   |               |          |               |              |                     |                             |                     |                             |             |
|                 | Foundation slab                         |   |               |          |               |              |                     |                             |                     |                             |             |
|                 | Pile                                    |   |               |          |               |              |                     |                             |                     |                             |             |
|                 | Erosion protection                      | _ |               |          |               |              |                     |                             |                     |                             |             |
|                 | SLOPE AND EMBANKMENT                    |   |               |          |               |              |                     |                             |                     |                             |             |
|                 | Embankment, embankment end, back fill   |   |               |          | -             |              |                     |                             |                     | -                           |             |
|                 | Soil reinforcement and slope protection |   |               |          |               |              |                     |                             |                     |                             |             |



### Life Cycle Values

Bridge Life Cycle Optimisation

- Bridge designer is calculating life cycle costs and environmental effects with the new LCC and LCA tools
- In certain projects aesthetical factor is calculated by bridge designer based preferably on a survey of experts and people affected
- These factors and values are based on standardized values, methods and tools and are thus easily comparable



# Applications in design and decision making

Bridge Life Cycle Optimisation

- Bridge designer can optimize his/hers plans according to life cycle issues and verify the benefits to the client
- Client can utilize life cycle view in decision between proposed alternatives and also in project guidance
- Client can utilize the life cycle plan in maintenance planning



# Applications in procurement using standardized methods and tools

Bridge Life Cycle Optimisation

- Instead of comparing investment prices one can compare life cycle costs. This opens truly remarkable possibilities for new innovations!
- Limits for environmental burdens may be set or different bonus systems created based on the values calculated from LCA.
- Aesthetical values may be compared (even in monetary terms) using LCE. This is particularly suitable in bridge design competitions



### Effects on new bridges

Bridge Life Cycle Optimisation

### Life cycle view changes materials and design solutions

- •100 years service life affects material choices and their protection
- Use of LCA friendly wood increases?
- •Maintainability and access to the structures gets more attention?

•More surface treatments and protective layers to postpone or avoid reparations?



#### Bridge site affects materials and design solutions

- •Aesthetical and cultural values of a site affects design solutions
- •Transporting costs affects material choices
- •Amount of traffic and possibilities of detours affect materials and design solutions



# New ideas on heavily trafficked bridges

Bridge Life Cycle Optimisation

•Why not sometimes build extra broad bridges to be able to fix the parapets without traffic disturbance?

•Why not make the water isolation of "gold" if it would last 100 years?

•Should we learn from the quick erection and repair methods used in railway bridges?





Foto: Megasiirto



### Starting to cash in benefits

Bridge Life Cycle Optimisation

Road authorities are in key position.



## Nothing happens if we don't support and require the use of ETSI!