LCC och LCA in Swedish Transport Administration

ETSI 2012-05-14

Terms and definition

- LCC = Life Cycle Costs
- LCA = Life Cycle Analysis

Methods for performance of LCC

- Calculation based on statistic experience for investment as well as maintenance costs. Gives an well-balanced estimation of investment costs and maintenance costs.
- Experience based judgement of maintenance costs. Gives estimations solely based on maintenance costs.
- Judgements based on best praxis. Can take into account both investments cost as well as maintenance costs. Very seldom so well documented so that the best praxis can be used for evaluation and improvement of the method and judgement.

LCC

Pilot project 1:

Trafikverket Proposal

Pilot project 1: Comparison different bridge solutions

Proposal No.	Description	Similar & Reference Bridges	Cross-Section Details	Average Constr. Height
1	Trafikverkets proposal: One bridge, Continuous two steel boxes, two bearing per box	11-788-2, 22-1455-1, 22-1106-1, 22-999-1, 22-1125-1, 14-1817-1	TOTAL BROREDD 214 m VO5 V05 V35 V35 V25 V35 V25 V35 V25 V25 V25 V25 V25 V25 V25 V2	2.3m
2	One bridge, Continuous two steel boxes, one bearing per box			2.3 m
3	Two bridges, Continuous, two I-steel Beams, One bearing per beam	18-1017-1, 14-1506-1, 3-339-2, 22-1533-1, 20-1220-1	FRI BROBRECD 9000 V2000 25% PRI PRI 25% PRI 25% PRI 25% PRI 25% PRI 25% PRI 25% PRI 25% PRI 25% PRI PRI PRI PRI PRI PRI PRI PRI	Haunch beam Max. 3.2m Min. 1.8m
4	Two bridges, Continuous, one Pre- Stressed Concrete box per bridge, two bearings per box	7-674-1, 19-841-1	BROBREDD 21500MM V500 V500 V K V K V K V K V K V K V K V K V K V K V K V K V K V K V K V K V VID VAR HANDLE	2.8 m
5	Two Bridges, Integral Pre-Stressed Cantilever Continuous, one concrete box per bridge	18-767-1		Haunch beam Max. 3.4m Min. 1.3m

Pilot project 1: BaTMan-LCC Analys

Pilot project 1: Sensitivity analysis

- The most cost effective proposal is No.4 (Two bridges, one pre-stressed concrete box per bridge, two bearings per box).
- In case of implementing this proposal, Trafikverket can save 83 Million SEK in a comparison of implementing the first proposal.

Use of LCC-calculations in investment projects

- Scope: Bridges and road super structures
- Evaluation of possible technical solutions in feasibility studies.
- Forms basis for evaluation of technical solution for a build contract and will be used in detail design phase
- Forms basis in producing demands for the tender documents for a design and build contract and also used when evaluating the contractors proposal of technical solution in design and construction phase

Course of action

□ Educate "super-users", one per region, during 2012.

□ Perform pilot projects, at least one per region during 2012.

Develop a procedure description for the use of LCC- analysis's and incorporate it into the investment project management system during 2013.

Produce standard LCC-analysis's for typical technical solutions to be used as standard LCC-analysis, during 2013.