

Bridge Life Cycle Optimisation

Closing Seminar 14-15 May, 2012 Malmö

LCC Tools

Description of programs and principles

Håkan Sundquist Structural Engineering and Bridges Royal Institute of Technology, KTH, Stockholm

The costs are recalculated to one point in time usually the day of opening the bridge

$$LCC_{\text{owner}} = \sum_{t=0}^{T} \frac{C_{t}}{\left(1+r\right)^{t}}$$

- C_t the sum of all costs incurred at time t,
- p the real interest rate or a rate taking into account changes in the benefit of the structure and
- *t* the time period studied, typically for a structure for the infrastructure the expected life span.

User cost delay

Bridge Life Cycle Optimisation

$$LCC_{\text{user,delay}} = \sum_{t=0}^{T} \left(\frac{L}{v_{\text{r}}} - \frac{L}{v_{\text{n}}} \right) ADT_{t} \cdot N_{t} \left(p_{\text{L}} w_{\text{L}} + (1 - p_{\text{L}}) w_{\text{D}} \right) \frac{1}{(1 + r)^{t}}$$

L length of affected roadway the traffic speed during bridge work activity *V*_r the normal traffic speed *v*_n ADT_{t} the average daily traffic, i.e. cars per day at time t the number of days of road work at time t N_{t} the amount of commercial traffic $p_{\rm L}$ is the hourly time value for commercial traffic WL the hourly time value for drivers WL T studied time interval T

Bridge Life Cycle

Optimisation	$LCC_{\text{user,operating}} = \sum_{t=0}^{T} \left(\frac{L}{v_{\text{r}}} - \frac{L}{v_{\text{n}}} \right) ADT_{t} \cdot N_{t} \left(r_{\text{L}} \left(o_{\text{L}} + o_{\text{G}} \right) + (1 - r_{\text{L}}) o_{\text{D}} \right) \frac{1}{\left(1 + r\right)^{t}}$
	New notations: o_L operating cost for the commercial traffic vehicles o_G operating cost for transported goods o_D operating cost for cars T time interval
Håkan Sundquist	5

Societal costs, accidents

Bridge Life Cycle Optimisation

$$LCC_{\text{society, accident}} = \sum_{t=0}^{T} (A_{r} - A_{n}) ADT_{t} \cdot N_{t} \cdot C_{\text{acc}} \frac{1}{(1+r)^{t}}$$

Notations:

- *A*_n the normal accident rate per vehicle-kilometres
 - the accident rate during roadwork

C_{acc}

 $A_{\rm r}$

the cost for each accident for the society

Societal costs, failure

Bridge Life Cycle Optimisation

$$LCC_{\text{society, failure}} = \sum_{j=1}^{n} K_{\mathrm{H},j} R_j \frac{1}{(1+r)^j}$$

R_j probability for a specified failure coupled to *K_{H,j}*. *K_{H,j}* cost for failure
(One value for ultimate limit state and one for serviceability limit state)
For normal bridges the probability of failure is so small that it could

be omitted in the analysis!

Valuation

- Degradation models
- Knowledge on interest rents (100 year!!)
- Knowledge about the future of the traffic system! (will the traffic increase or decrease??)
- Knowledge of costs for
 - operation,
 - maintenance,
 - inspection and
 - repair

- Methodologies for dividing the bridge into different parts and giving measures of the components
- Costs for construction and repair different parts of the bridge
- Yearly operating costs
- Actions <u>in time</u> for MR&R actions
- Cost for disposal of the bridge
- User and societal costs

Dividing the bridge parts and elements

Bridge Life Cycle Optimisation

Foundation
Foundation slab, plinth, pile cap
Excavation, soil
Excavation, rock
Pile
Erosion protection
Slope and embankment
Embankment, embankment end, backfill
Soil reinforcement and slope protection
Abutments and piers
All concrete structures belonging to the substructure excl. foundation
Main load-bearing structure
Slab / deck
Beam
Truss
Arch, Vault
Cable system
Pipe, Culvert
Secondary load-bearing system
Secondary load-bearing beam, cross beam
Secondary load-bearing truss, Wind bracing
Equipment
Bearing and Hinge
Edge beam
Insulation, Water proofing
Surfacing
Parapet, Railing
Expansion joint
Drainage system

Bridge parts and measures

Cross-section definitions

Foundation

Materials for LCC

Bridge Life Cycle Optimisation

Material	Measure	Quality	Description
Concrete	m^3	C25 ¹	Cylinder strength in MPa
Reinforcement steel	ton	500^{2}	Yield strength in MPa
Steel for pre-stressing, tendons,	ton	1700	Yield strength in MPa
cables			
Steel	ton	350 ³	Yield strength in MPa
Sawn Timber	m^3		
Glue laminated timber	m ³		
Impregnated timber	m ³		
Backfill soil	m ³		
Pile	m	Type ⁴	Directly coupled to the
			structural element

OBS, LCA requires added material definitions!

Costs

- Cost parameters should be given by the agencies hopefully in data bases updated every year!?
 - Costs for construction
 - Cost for MR&R actions
 - Parameters for calculating the user costs
 - Societal costs
 - ...

Definition of actions

- Management
- Operation
- Inspections
- Repair
- Upgrading
- Final demolition and disposal

LCC scheme

Different definitions of LCC

Bridge Life Cycle Optimisation

 LCC_{adency} is the part of the total LCC cost that encumbers the owner of the project. This cost can in turn be divided into different parts $LCC_{agency} = LCC_{acquision} + LCC_{MR\&R} + LCC_{consequence}$ *LCC*_{acquision} (sometimes denoted *LCCA*) is the cost for acquisition of the project **including** all relevant costs for programming and design of the project, by the net present value calculated to a specified time usually the opening of the bridge. LCC_{MR&R} (sometimes denoted LSC Life Support Cost) is the cost for future operation, maintenance, repair and disposal of the bridge, by the net present value calculated to a specified time usually the opening of the bridge. *LCC*_{consequence} is the future costs for possible negative consequences, by the net present value calculated to a specified time, usually the opening of the bridge. This kind of costs could possibly be a part of the user (LCC_{user}) or the society costs $LCC_{society}$ is the future costs for possible negative consequences for the society, by the net present value calculated to a specified time, usually the opening of the bridge.

Remember that it must for each case be discussed what to include in the LCC

- In the investment part
 - Planning and design
 - The owners internal cost
 - Investment part for maintenance
 - Spare parts and material
 - Documentation needed for the maintenance
 - instrument, tools, vehicles that is needed for inspection and maintenance
 - Hire and education of personnel
- In the MR&R
 - The owners cost for personnel
 - The owners own work for keeping the bridge inventory, the planning and other actions to manage the bridge stock. Usually this work can be assigned as percentage of the actual value to re-build the bridge stock.

Bridge Life Cycle Optimisation

Examples of "operation maintenance actions". In the Swedish system this is called "Egenskaper" or "properties"

Action	Frequency	Aim	Remark
Regular inspection	Often	Detect acute damages	
Cleaning of the bridge	Once a year	Removal of de-icing salt	
Rodding of dewatering system	Once a year		
Cleaning of expansion joints	Once a year		
Removal of plants and bushes,	Once a year		

- Needed parameters:
 - Life span
 - Yearly operation actions
 - Time interval between inspections
 - Time between maintenance and repair

Design life span

- Concrete and steel bridges
 80 120 years
- Timber bridges 40 - 80 years
- Steel culverts Soil-Steel composite 40 - 80 years

Real life-span of bridges

Within the ETSI project two LCC programs have been developed

Bridge Life Cycle Optimisation

• The WebLCC bridge program.

- This program is in theory very versatile an effective because almost everything can be defined dynamically.
- No program has to be stored in the individual computer. Everything is stored in a server.
- But even if we have put a lot of effort and cost on programming we have not been able to develop a stable and safe system.
- This is something for the future, but special programming resources have to be hired!
- A stand-alone EXCEL program
 - It is on the USB stick!

Start page

Bridge Life Cycle Optimisation

ETSI Bridge LCC

Optimal New Bridges - Life cycle cost analysis (LCCA)

Copyright 2011 Raid Karoumi & Håkan Sundquist Version 2.3 [2012-05-07], ETSI

This program was first developed by Raid Karoumi (Royal Institute of Technology, Structural Engineering & Bridges, raid.karoumi@byv.kth.se) The work was funded by the Swedish Road Administration (SRA), and this is a prototype for testing. The program is intended only to compare the LCC of the alternative bridge solutions, which means that all factors that influence the LCC are not considered (e.g. costs of the design, land purchase and administration). This version 2.3 in English has been developed in the ETSI project

NOTE

• Never feed a space in a non-current cell. Instead, please state 0 (i.e. zero).

Repair interval entered will be adjusted depending on the chosen concrete quality, ADT, climate zone, salt quantity, placement on the bridge, and concrete cover.

• Repair intervals should be chosen to receive a maximum of about 3 - 4 major steps in the bridge lifetime and at least 10 years apart.

Quantities specified for calculating the cost of repair need not to be equal to investment quantities. I.e. you can choose to repair some of the concrete in bridge deck rather than replace the whole.

• If no data is entered for the calculation of investment cost, the investment cost will be chosen as the cost given in the current tender (entered during the pre- subsidence) to allow the calculation of the total LCC.

• The program includes road user costs only in the form of restrictions on traffic benefits for the time work is underway on the bridge and restricts accessibility for road users.

• Many of the listed "default" values of the rates and intervals are guessed by the author of the program and could therefore be wrong.

Always save the file xxx.xls under a new name before making changes / inputting of a new project.

• Boxes with a small red triangle in the upper right corner contain help text. The text is visible by setting the mouse pointer over the box

General conditions

Bridge Life Cycle Optimisation

General conditions											
Name of bridge: Project number: Administrator: Date:	New comp 1234-15 Raid Karc 2012-05-0	New composite bridge bridge to X 1234-15 Raid Karoumi & Håkan Sundquist 2012-05-02									
Climate zone:		Low er north Sw eder -									
Road salting		Normal salt spreadin									
Investment cost according to tender	CUR	0									
Demolition cost in % of investment cost	%	10.0									
Calculus period	vears	100									
Yearly real interest rent	%	3.0									
	,,,	0,0									
Average daily traffic. ADT		10 000									
Percentage of trucks	%	14.0									
Allowed speed on the bridge	km/h	90									
Reduced speed due to repair actions	km/h	50									
Hourly cost, car	CUR/h	85									
Hourly cost, truck	CUR/h	400									
Total bridge length	m	165,0									
Length of superstructure	m	149,2									
Lengths of edge beams	m	330									
Effective bridge width	m	10,5									
Total bridge width	m	11,3									
Bridge area	m ²	1686									
Area of surfacing	m ²	1567									
Painted area (steel beams etc.)	m ²	1033									
Number of railings (parapets)	no.	2									
Total length of railings(parapets)	m	330									
	Weighting in	putted default intervals									
Climate zone											
Average daily traffic ADT	0.8	0,0									
Saltning	1.0	0,0									
Construction part subjected to salt action	1,0	0,0									
Concrete quality > $C.30/C.37$	1,0	1.0									
Concrete cover > Standard	1,0	0,0									
	1,0	0,0	_								

Investment

Bridge Life Cycle Optimisation

formwork

concrete	4 000	CUR/m ³											
steel	55 000	CUR/ton											
reinforcement	40 000	CUR/ton											
cables	6 000	CUR/m											
rammed piles	1 800	CUR/m											
parapet	5 000	CUR/m											
insulation	500	CUR/m ²											
surfacing	900	CUR/m ²											
Sunacing	900	0010111											
Dotted fields contain the default values eva	lusted with the helr		ntered data. V	ou have the n	ossibility to in		values in the fields						
Dotted lields contain the delauit values eva	Qua	ntities for ca	Iculation o	f investme	nt cost	put your own	values in the lielus.						
formwork [m ²] concrete[m ³] reinf. [ton] steel [ton] cables [m] piles [m] others, total co													
SUBSTRUCTURE													
foundation slab	121	492	43			1472		6 508 460					
pier & column	0	0	0			0		0					
front wall	0	0	0					0					
wing wall	0	0	0					0					
bridge seat	0	0						0					
upper front wall								Ō					
backfill							1000000	1 000 000					
substructure others								0					
SUPERSTRUCTURE													
main beams				300,7				16 538 500					
cross beams				0				0					
truss								0					
arch								0					
pylon or tower								0					
cables								0					
bridge deck	1686	502	110,1					8 603 748					
edge beam,	0	0	0					0					
superstructure others								0					
BRIDGE DETAILS													
bearing							208000	208.000					
insulation	-						783300	783 300					
surfacing	-						1400040	1 409 940					
railing or parapet	-						1402000	1 402 000					
expansion joint							452000	452 000					
drainage system							432000	452 000					
bridge details others								0					
	1												
OTHERS													
aesthetics							0	0					
other construction costs								0					
						Σ Investn	nent cost/CUR	36 995 948					

New construction costs Unit price

CUR/m²

1 300

Operation & Maintenance

Operation and M														
	dotted fields co	ntain the de	fault values eva	luated with the b	alp of previously e	entered data. You	have the nossibili	ty to input y	our own values	in the fields				
	MR&R un	it cost &	quantities	idated with the h	MR&R interv	IR&R interval alt. Single year Traffic disturbance MR&R cost								
	unit cos	ts	quantities interval, year		action year action year		action year	davs length		cost each time	tot cost	cost each time	tot cost	
yearly surveillance	110 988	CUR		1	0	0	0	0,0	0,0	110 988	3 507 094	0	0	
superficial inspection		CUR		3	0	0	0	0,5	0,3	0	0	1 721	17 569	
main inspection	168 596	CUR		6	0	0	0	0,5	0,3	168 596	817 936	1 721	8 351	
cleaning (removal of salt etc.)	1	CUR/m ²	1 686	1	0	0	0	0,5	0,2	1 686	53 274	1 148	36 261	
rodding of drainage system		CUR		0	0	0	0	0,0	0,0	0	0	0	0	
impregnation of edge beams	300	CUR/m	330	10	0	0	0	5,0	0,1	99 000	272 882	8 561	23 597	
maintenance of parapets, patch painting	1 100	CUR/m	330	0	0	0	0	3,0	0,1	363 000	0	5 136	0	
maintenance of bridge seat	5 000	CUR		0	0	0	0	10,0	1,0	5 000	0	114 756	0	
maintenance of expansion joints	3 000	CUR/m	23		0	0	0	4,0	0,1	67 800	0	6 849	0	
backfilling and restoration of erosion protection	12 000	CUR		0	0	0	0	0,0	0,0	12 000	0	0	0	
painting patching	500	CUR/m ²	1 033	0	0	0	0	5,0	1,0	516 400	0	57 378	0	
dehumidification device, el + maintenance	25 000	CUR/a		0	0	0	0	0,0	0,0	25 000	0	0	0	
edge beam rep 0 - 30 mm/m ²	3 000	CUR	418	0	0	0	0	20,0	0,8	1 254 000	0	183 609	0	
change of rubber in expansion joint	3 000	CUR	23		13	63	0	5,0	0,1	67 800	56 700	5 738	4 798	
adjustment of wearing course	400	CUR	1 567		0	0	0	0,0	0,0	626 640	0	0	0	
bearings minor repair + painting	7 000	CUR	8	0	0	0	0	0,0	0,0	56 000	0	0	0	
										Σ present cost	4 707 888	Σ present cost	90 576	

Repair

Repair cost																									
<repair alt="" new="" part=""></repair>																									
	Dotted fields of	contain the defa	ult values evaluate	d with the help of pr	eviously entered of	data. You have the po	ssibility to input you	rown values in th	e fields.																
	Repair qu	iantities and	unit costs		AR& R interva	l alt. Single year		Traffic distu	rbance	Input fo	r weighting of tin	ne interval	A Contractor and a	107			weighting		and a local distances of		and the second	Rep	aircost	Us	ercost
	unt c	ost	quantities	interval, year	action year	action year	action year	days	length	saitexposure	Concrete quality C00/37	cover qoutient	t climate zone	ADT	satining on road	partexposed	concrete quality	concrete cover	original Interval	weighted interval	ownInterval	cost each time	tot cost	cost each time	tot cost
SUBSTRUCTURE					-	-	-							NIIIII	×/////////////////////////////////////	a			-				-	-	-
bottom slab intermediate piers	1 000	CUR/m ²	0	0	0	0	0	0,0	0,0		30	1	1111/00/1111	41111111111111	141111111111111111111111111111111111111	2 1,0	1,0	1,0	0	0	0	0	0	0	0
piers	4 000	CUR/m ²	121		50	0	0	0,0	0,0	×	50	1,25	1,0	0,8	1,0	1,0	1,0	1,3	0	0	0	482 400	110 039	0	0
intermediate support cross beams	_	CUR/m ²											1,0	0,8	1,0	1,0	1,0	1,0	0	0	0	0	0		
Other		CUR									-		1,0	0,8	1,0	1,0	1,0	1,0	0	0	0	0	0		
bottom slab abutments		CUR/m ²											1,0	0,8	1,0	1,0	1,0	1,0	0	0	0	0	0		
front wall	4 000	CUR/m ²	158		50	0	0	0,0	0,0		30	1	1,0	0,8	1,0	1,0	1,0	1,0	0	0	0	630 000	143 707	0	0
wing wall	2 800	CUR/m ²	150		50	0	0	0,0	0,0		30	1	1,0	1111111	X/////?/////	1,0	1,0	1,0	0	0	0	420 000	95 805	0	0
bearing seat	2 000	CUR/m ²	10		0	0	0	0,0	0,0		30	1	1,0	0,8	(//////////////////////////////////////	1,0	1,0	1,0	0	0	0	20 000	0	0	0
upper front wall	2 800	CUR/m ²	60		0	0	0	0,0	0,0				(//////////////////////////////////////	<u> /////xw///</u>	///////////////////////////////////////	X////X&////	///////////////////////////////////////	<u> </u>	0	0	0	168 000	0	0	0
backfilling	900	CUR/m ³	130		0	0	0	0,0	0,0				///////////////////////////////////////	<u>X////////////////////////////////////</u>	<u>X////////////////////////////////////</u>	X//////X/8////	<u> X////////////////////////////////////</u>	<u> </u>	0	0	0	117 000	0	0	0
SUPERSTRUCTURE																	-			-	-				
main beams re-painting	2 500	CUR/m ²	1 0 3 3			50	0	0,0	0,0		60	1	1,0	(//////////////////////////////////////	X/////X/////	1,0	1,0	1,0	0	0	0	2 582 000	588 972	0	0
cross beams, re-painting	1 300	CUR/m ²	8		0	0	0	0,0	0,0		60	1	1,0	(//////////////////////////////////////	X////NS/////	1,0	1,0	1,0	0	0	0	10 400	0	0	0
main beams patch painting	500	CUR/m ²			25	75							1,0	1//////////////////////////////////////	X//////	1,0	1,0	1,0	0	0		0	0	0	0
edge beam partial repair	3 000	CURIm	418		25	63		15,0					1,0	1111111111	X////K&////	1,0	1,0	1,0	0	0		1 253 400	793 321	0	0
Bridge deck partial repair		CUR/m ²											1,0	(//////////////////////////////////////	X////NS/////	1,0	1,0	1,0	0	0		0	0	0	0
truss	1 300	CUR/m ²	0		0	0	0	0,0	0,0				1,0	0,8	1,0	///////////////////////////////////////	X/////ss////	X////xs////	0	0	0	0	0	0	0
arch	1 300	CUR/m ²	0		0	0	0	0,0	0,0				1,0	0,8	1,0	1,0	1,0	1,0	0	0	0	0	0	0	0
pylons	1 300	CUR/m ²	0		0	0	0	0,0	0,0				1,0	0,8	1,0	1,0	1,0	1,0	0	0	0	0	0	0	0
cables	4 000	CURIm	0		0	0	0	0,0	0,0	x			///////////////////////////////////////	0,8	1,0	1,0	V//////	¥////×\$////	0	0	0	0	0	0	0
bridge deck	4 000	CUR/m ²	1567		0	0	0	25,0	0,2		40	2	1,0	0,8	1,0	1,0	1,0	2,0	0	0	0	6 266 400	0	53 505	0
edge beam replacement	9 0 0 0	CURIm	330	0	50		88	22,0	0,2	x	40	2	1,0	0,8	1,0	1,0	1,0	2,0	0	0	0	2 970 000	897 812	47 084	14 233
BRIDGE DETAILS																									
bearings	7 000	CUR/item	8		37	75	0	3,0	0,2				///////////////////////////////////////	X//////	N//////	X////X/S////	X//////	X////K6////	0	0	0	56 000	24 860	6421	2 850
insulation	1 800	CUR/m ²	1567		37	75	0	25,0	0,2				///////////////////////////////////////	0,8	1,0	111111111111	X////XS////	V/////www./////	0	0	0	2 819 880	1 251 824	53 505	23 752
surfacing	600	CUR/m ²	1567	0	37	75	0	25,0	0,2				(//////////////////////////////////////	0,8	1,0	///////////////////////////////////////	X////X&////	X/////K&/////	0	0	0	939 960	417 275	53 505	23 752
parapets and noise barriars, partial painting	1 100	CURIm	298	13				15,0	0,1				///////////////////////////////////////	0,8	1,0	///////////////////////////////////////	X//////	X////K6////	13	10	0	328 240	904 757	25 682	70 790
expansion joints	30 000	CURIm	23	0	37		88	5.0	0.1				///////////////////////////////////////	0.8	1.0	111111111111	///////////////////////////////////////	V////xw/////	0	0	0	678 000	277 417	8 561	3 503
parapets replacement	5 000	CURIm	298			50							(//////////////////////////////////////	1,0	1,0	///////////////////////////////////////	X////X&////		0	0	0	1 492 000	340 336	0	0
surfacing, partial repair	400	CUR/m ²	1567	13				10.0	0.1				///////////////////////////////////////	1.0	1.0	V////xx////	X/////ss////	V////K&////	13	13	0	626 640	1 246 648	17 122	34 062
expansion joints, change of rubber sealing	3 0 0 0	CURIm	23	13				3.0	0.2				///////////////////////////////////////	1.0	1.0	///////////////////////////////////////	N/////K&////	V////xw////	13	13	0	67 800	134 882	6 4 2 1	12773
drainage system	2 500	CUR/tem	4	0	0	0	0	0.0	0.0				10	1111111111	NIIIKKIIII	X/////XX////	X////XX////		0	0	0	10 000	0	0	0
	2000	Goroaciii		Ŭ	- v	Ŷ	ů.	0,0	0,0				1,0				Accession and the second	******	Ŭ,	· ·	, v	10 000	, ů	Ŭ	Ů. Ř
MISCELLANEOUS																									
aesthetics	100 000	CUR	i	0	0	0	0	20	01				11111661111	0.8	10	11111881111	18/////////////////////////////////////	X/////////////////////////////////////	0	0	0	100.000	0	1712	0
other repair actions (total cost)	50,000	CUD	1	0	0	0	0	1.5	0.8	1			10	0.8	10	VIIIIXXIIII	X/////22////	¥////₩k////	0	0	0	50,000	0	13 771	0
other repair actions (total cost)	10,000	CUR		0	0	0	0	0.0	0.0	1			1.0	0.8	1.0	V/////////////////////////////////////	XIIIIANIII	VIIII	0	0	0	00 000	0	0	0
	.0000	COR		Ű	, v	, v		3,0	3,0		-	-	1,0	0,0	1,0	111111111111111111111111111111111111111	and the second states of the	~~~~				Present value	7 227 656	P present value	195 746

Bridge Life Cycle Optimisation

ETSI, Bridge Stand alone LCC Optimal new bridges - Life cycle analysis

Life cycle cost

Result

When you open the program

- You will find the example presented in the Proceedings.
- When starting your own calculations save the file under a new name!
- Everything is presented in the new invented currency "CUR" that can represent NOK, DKK, SEK, €, …

The example

Bridge Life Cycle Optimisation A Steel-Concrete Composite Bridge

Quantities and costs

- In principle from a Power Point Presentation from the Finnish Transport Agency, based on
- material Quantity and Cost Estimation Models for the Design of Highway Bridges", Acta Polytechnica Scandinavia – Civil Engineering and Building Construction Series, No. 90, 1988
- I have made some modifications for the substructure
- Costs are based on two current bridges in the Stockholm area
- Happens to be almost exactly the cost for this type of bridge in Sweden 22 000 SEK/m²

MR&R costs

Bridge Life Cycle Optimisation

- The MR&R actions and costs are from a current project in Stockholm
- Right or wrong...
- As I have said before "the only thing we now about the future is that we don't know anything"

Bridge Life Cycle Optimisation

ETSI, Bridge Stand alone LCC Optimal new bridges - Life cycle analysis

Life cycle cost

New composite bridge bridge to X

Result

The most complicated factor in a LCC analysis

Bridge Life Cycle Optimisation

Degradation rate and thus:

- Time between inspections
- Time between regular maintenance
- Time between remedial actions
 - Repair
 - Strengthening
 - Upgrading

• ...

Future interest rates

- To-morrow we will hear more about a method for predicting future times for actions and their costs based on data-base research in BaTMan!
- In the earlier ETSI Proceedings other methods for predicting the time for actions
- Also the chapter on Life Cycle Plan contains some discussion on time between actions

Bridge Life Cycle Optimisation

I hope there will lots of discussion on the LCC issues at the end of this session

Thank you!