Towards Sustainable Construction: Life Cycle Assessment of Railway Bridges

ROYAL INSTITUTE OF TECHNOLOGY

Guangli Du Ph.D. student KTH Royal Institute of Technology

Division of Structural Engineering and Bridges

FTECHNOLOGY

An Excel-Based LCA tool for Railway Bridge
Two case studies of the Banafjäl Bridge

Based on three Journal Papers:

•Thiebault Vincent, Du Guangli, Karoumi Raid, Design of railway bridges considering LCA, accepted by the journal of ICE Bridge Engineering.

•Du Guangli, Karoumi Raid, LCA of Railway Bridge: a comparison between two superstructure designs, published by the Journal of Structure and Infrastructure Engineering.

•Du Guangli, Karoumi Raid, Life cycle assessment of bridges: a literature survey and critical issues, submitted to the Journal of Structure and Infrastructure Engineering.

A challenge from the environmental issues

ROYAL INSTITUTE OF TECHNOLOGY

The main environmental issues from the construction

ROYAL INSTITUTE OF TECHNOLOGY

Figure 1: Environmental allocation due to construction in *OECD countries* (Building and climate change, 2007)

Division of Structural Engineering and Bridges

ROYAL INSTITUTE OF TECHNOLOGY Strategy for a sustainable transport from European White Paper 2011

- By 2030, 30% of road freight over 300km should shift to other modes, such as rail or waterborne transport
- By 2050, should be more than 50%

ROYAL INSTITUTE OF TECHNOLOGY

Life Cycle Assessment (LCA) of Railway Bridges

Air emissions

Main Aim:

- estigate the key operational issues
- ablish a generalized framework
- lement LCA into practical studies

ect

- a new design criterion
- imize the bridge life cycle scenarios

Table 1: The life cycle covered by the tool

Material manufacture phase		Structural comp Railway track sys Superstructure Substructure	ponents stem	Material Concrete timber, r electricity fuel	and Energy , steel, paintin ubber, aggregat , reinforcemer	lg, te, ht,
Construction phase	En	ergy consumption	of construction mad	chines		
	Ma	aintenance sched	lules with related tr	affic distur	bances and tr	ansportation
	Ma	aintenance sched Structural	lules with related tr Maintenance activi	r affic distur	bances and tr Ballast track	ansportation Fixed-slab track
	Ma	aintenance sched Structural	lules with related tr Maintenance activi Track direction	r affic distur	bances and tr Ballast track 0.5 year	ansportation Fixed-slab track no repair
	Ma	aintenance sched Structural	lules with related tr Maintenance activi Track direction Rail replacement	affic distur ity	bances and tr Ballast track 0.5 year 25 years	ansportation Fixed-slab track no repair 25 years
Maintenance	Ma	aintenance sched Structural	ules with related tr Maintenance active Track direction Rail replacement Sleeper renewal	affic distur	bances and tr Ballast track 0.5 year 25 years 50 years	Ansportation Fixed-slab track no repair 25 years no repair
Maintenance phase	Ma	aintenance sched Structural	ules with related tr Maintenance activi Track direction Rail replacement Sleeper renewal Fastener renewal	a ffic distur	bances and tr Ballast track 0.5 year 25 years 50 years 25 years 25 years	AnsportationFixed-slab trackno repair25 yearsno repair25 years25 years
Maintenance phase	Ma	aintenance sched Structural	Maintenance activity Maintenance activity Track direction Rail replacement Sleeper renewal Fastener renewal Rubber pad renew	a ffic distur ity al	bances and tr Ballast track 0.5 year 25 years 50 years 25 years 25 years 25 years	AnsportationFixed-slab trackno repair25 yearsno repair25 years25 years25 years25 years
Maintenance phase	Ma	aintenance sched Structural	Aules with related tr Maintenance active Track direction Rail replacement Sleeper renewal Fastener renewal Rubber pad renew Ballast renewal	a ffic distur ity al	bances and tr Ballast track 0.5 year 25 years 50 years 25 years 25 years 20 years	AnsportationFixed-slab trackno repair25 yearsno repair25 years25 years25 years25 yearsno repair

ammonia, benzene, carbon monoxide, nitrogen oxides, sulphur oxides, hydrogen chloride, hydrogen fluoride, hydrogen sulphide, carbon dioxide, dinitrogen onoxide, manthe a man NINN/OC

Characterization result

Case study 1: LCA of the Banafjäl Bridge

- Steel-concrete composite bridge
- Single ballasted railway track
- 42 m span, 7.2 m width
- Located on the Bothnia Line, Sweden

Two design alternatives:

Study scope of the Banafjäl Bridge

	Life cycl	e of the Banafjä	l Bridge	
Ballas	t track design option	n Fixed slab	design option	
	Railway track	Bridge deck	Steel I-girder	
Material manufacture stage	Ballast Fastening clips Sleeper Rails Rubber pad	Concrete slab Reinforcement	Cross stringers Steel I-girder Painting	
Construction stage	Energy consum	ption in the con	struction machine	Tansportation
	Railway track	Steel I-girder	Traffic disturbance	process
Maintenance stage	Ballast Fastening clips Sleeper Rails	Painting	Truck transportation Private cars	

Sensitivity analysis: Rail replacement interval every 25 years to 20 years

Impact category	Abbreviation	Ballast option $+ \Delta \%$	Fixed-slab option $+ \Delta \%$
Abiotic depletion Acidification Eutrophication Global warming Ozone layer depletion	ADP AP EP GWP100 ODP	13% 12% 14% 13% 7%	16% 17% 16% 17% 13%
Photochemical	POCP	13%	16%

Sensitivity analysis: consider traffic disturbance or not

Impact category	Abbreviation	Ballast option $+ \Delta \%$	Fixed-slab option $+ \Delta \%$
Abiotic depletion	ADP	0.43%	0.16%
Acidification	AP	0.31%	0.13%
Eutrophication	EP	0.29%	0.09%
Global warming	GWP100	0.42%	0.17%
Ozone layer depletion	ODP	0.83%	0.61%
Photochemical oxidation	POCP	0.28%	0.10%

Case Study 2: Banafjäl Bridge

Case study 1 (

Case study 2

Life span & functional unit: 120 years for 1 m bridge in the longitudinal direction 60 years for the whole bridge

Included structure components

Included maintenance and EOL scenarios

Methodology and LCI databases:

CML 2001 method, Eco-indicator 99' method

Considered parameters in the sensitivity analysis:

Recycling rate, maintenance scenarios, traffic disturbances Increase all the parameters by 10%

Case Study 2: Banafjäl Bridge

Conclusions

k of uniformed LCA guideline and criterion is recognized as a main tacle. Currently, various LCIA methods and LCI databases are developed are available. However, the results are usually limited to the selected A methodology, the applied LCI data and different goal and scope nitions.

k of good LCI data and related information is another problem when forming LCA.

el of arbitrary, it has been found that the environmental profile varies e by case even for the same bridge type.

structural type affects the life cycle scenarios, thus further influencing

Thank you!