

Bridge Life Cycle Optimisation

Closing Seminar 14-15 May, 2012 Malmö

DESIGN OF SHORT-SPAN BRIDGES WITH REGARD TO LIFE CYCLE COSTS

Master thesis carried out at COWI – Göteborg, for Chalmers University of Technology, autumn 2011

Niklas Larsson & Dan Nilsson 2012-05-15

- Background •
- The LCC concept •
- Basis for analysis (input data for analysis) •
- Analysis •
 - Results •
- LCC approach for new bridges •
- **Conclusions**

BACKGROUND

- 1. Sweden's public procurement act
 - Usually the alternative with the lowest investment cost is chosen
- 2. In 2009, 74% of Sweden's budget for infrastructures was used for operation, maintenance and repair (OMR)
- 3. Methods developed to estimate costs over time
 - Life Cycle Cost Analyses (LCCA)
- Could a solution that is more expensive today, be the financially most favourable over time?

PURPOSE/AIM

Bridge Life Cycle Optimisation

Purpose:

• To find an approach on how to use the LCC-analysis as a decision-making tool in design when planning new bridges

Aim:

- To compare two LCC cases
 - Case 0 Today's standard execution of detailing
 - Case 1 Alternative detailing solutions

SCOPE

- Decision-making of detailing solutions
- 3 *common* short-span bridge types (road) was considered
 - Concrete, steel and timber
- Swedish conditions
 - Urban environment
- Extreme conditions were to be omitted
 - As generally applicable as possible

METHOD

- Start-out point: The LCC concept
 - Literature studies
- Selection of 3 bridge types
- Statistical compilation on typical problems from the BaTMan database
 - Alternative approach: Compilation based on interviews with experienced bridge managers

METHOD

Bridge Life Cycle Optimisation

Comparative LCC-analysis

- By using computer softwares
 - WebLCC/BroLCC (was under development by the ETSI project during the thesis)
 - BridgeLCC (US developed)
 - Vännen07 (Swedish, Trafikverket)
- Evaluation of the impacts alternative detailing solutions had to the LCC
 - Identification of sensitivity factors
- Develop a method on how to use LCC, based on the conclusions drawn from the analysis

THE LCC CONCEPT

Bridge Life Cycle Optimisation General

• Equation:
$$LCC = \sum_{n=0}^{L} \frac{B_n}{(1+r)^n}$$

- LCC= Present value of the life cycle cost
- n= Age of which the present value is discounted from
- B_n= Sum of all costs and incomes at age n
- r= Discount rate (usually 4 % in Sweden)
- L= Service life
- An LCC becomes useful first when it is compared to another LCC

THE LCC CONCEPT

Bridge Life Cycle Optimisation

Applications in bridge engineering

- Bridges = large systems of "products" to be considered
 - Need for simplifications and assumptions
- Bridges usually do not generate any income
 - In Sweden, infrastructural projects are justified when the benefits (traffic) exceeds the costs
- For LCC-analysis to become a recognized decision-making tool in bridge engineering, 3 conditions need to be fulfilled:
 - 1. Widely accepted model(s) **Yet to be developed**
 - 2. Reliable input data, and source (database) **BaTMan (Swe)**
 - 3. Changes in the way today's procurements are processed **Yet to be implemented**

- Bridge types

- Information gathering on common problems

Bridge Life Cycle Optimisation

BaTMan

- An inquiry was formed and delivered to Trafikverket
 - The inquiry was too extensive and time consuming to extract
- Alternative approach (interviews)
 - Performed with experienced bridge- managers & engineers at:
 - Trafikverket
 - COWI
 - etc.

- Back-wall bridge (concrete)

Bridge Life Cycle Optimisation

Problems

1. Settlements at back-wall

- Need for extra asphalt
- 2. Edge beam replacement
 - Reinforcement corrosion
- 3. Bearing replacement (rubber)
 - Wears out within ~30 years
- 4. Cone erosion
 - Storm water runs down the slope

Alternative solutions

1. Instalment of link plate

- Reduces settlements
- 2. Using stainless steel reinf.
 - No need for replacement
- 3. Sliding bearings (steel)
 - No need for replacement

4. Extension of edge beams

• Diverts the water to the road embankment

- Composite bridge (steel/concrete)

Bridge Life Cycle Optimisation

Problems

- 1-4 from the back-wall applies
- 5. Wearing of the protective painting
 - Need for repainting ~25th year
- 6. Corrosion in bolted joints
 - Due to relative movements

Alternative solutions

- 1-4 from the back-wall applies
- 5. Pre-emptive washing of steel girders
 - Need for repainting ~35th year
- 6. Welding of joints

• No relative movements

- Transversally tensioned Glulam slab (Timber)

•

Bridge Life Cycle Optimisation

•

Problems

- 3 also applies (Bearings)
- 7. Durability of protective painting (panel)
 - Re-appliance ~8th year
- 8. Moisture damage to end timber
 - Inaccessible to monitor
 - Expensive to remedy

Alternative solutions

3 also applies (Bearings)

7. Using impregnated timber

- No need for re-application
- 8. Installation of moisture indicators
 - Provide a measure to monitor
 - Avoids expensive damages

Bridge Life Cycle Optimisation

1. LCC-analysis case 0

• Analysis with regard to conventional design

2. LCC-analysis case 1

• Analysis with regard to alternative design

3. Comparison/evaluation of results

Identification of sensitivity factors

- Assumptions case 0

ANALYSIS - LCC-results, case 0

Back-wall bridge (Case 0)										
Activity	BroLCC				BridgeLCC			Vännen07		
Activity	OMR-costs	Traffic	Tot. LCC	OMR-costs	Traffic	Tot. LCC	OMR-costs	Traffic	Tot. LCC	
Edge beam replacement	39 925	7 610	47 535	41 522	7 914	49 436	41 182	-	41 182	
Bearings (rubber)	9 529	41 392	50 921	9 910	44 290	54 200	10 834	-	10 834	
Cone erosion	8 870	-	8 870	9 225	-	9 225	12 149	-	12 149	
Settlement repairs	79 677	5 695	85 372	82 865	5 923	88 788	82 865	-	82 865	
Sum			192 698			201 649			147 030	

Composite steel bridge (Case 0)										
Activity		BroLCC			BridgeLCC			Vännen07		
	OMR-costs	Traffic	Tot. LCC	OMR-costs	Traffic	Tot. LCC	OMR-costs	Traffic	Tot. LCC	
Edge beam replacement	39 925	7 610	47 535	41 522	7 914	49 436	41 182	-	41 182	
Bearings (rubber)	9 529	41 392	50 921	9 910	44 290	54 200	10 834	-	10 834	
Cone erosion	8 870	-	8 870	9 225	-	9 225	12 149	-	12 149	
Settlement repairs	79 677	5 695	85 372	82 865	5 923	88 788	82 865	-	82 865	
Repainting of girders	204 701	-	204 701	212 889		212 889	280 121	-	280 121	
Gap corrosion	7 941	-	7 941	8 259	-	8 259	9 686	-	9 686	
Sum			405 340			422 797			436 837	

Transversally tensioned Glulam slab (Case 0)										
Activity	BroLCC				BridgeLCC			Vännen07		
	OMR-costs	Traffic	Tot. LCC	OMR-costs	Traffic	Tot. LCC	OMR-costs	Traffic	Tot. LCC	
Bearings (rubber)	9 529	41 392	50 921	9 910	44 290	54 200	10 834	-	10 834	
Repainting of panel	9 344	-	9 344	9 555	-	9 555	9 717	-	9 717	
Damaged end timber	10 553	277 408	287 961	10 976	274 688	285 664	11 455	-	11 455	
Sum			348 226			349 419			32 006	

- Assumptions case 1

- Comparison and evaluation

Back-wall bridge (Comparison case 0 and case 1)													
Activity			Bro	LCC			BridgeLCC				Vännen07		
		OMR-costs	Traffic	Tot. LCC	Difference	OMR-costs	Traffic	Tot. LCC	Difference	OMR-costs	Traffic	Tot. LCC	Difference
Edan kasar	Case 0	39 925	7 610	47 535	41 522	7 914	49 436	10 564	41 182	-	41 182	10.010	
coge beam	Case 1	60 000	-	60 000	- 12 465	60 000	-	60 000	- 10 564	60 000		60 000	- 10 010
Provinces	Case 0	9 529	41 392	50 921	20.070	9 910	44 290	54 200	25 800	10 834	-	10 834	- 79 166
bearings	Case 1	90 000	-	90 000	- 39 079	90 000	-	90 000	- 35 800	90 000	-	90 000	
C	Case 0	8 870	-	8 870	20.120	9 225	-	9 225	20 775	12 149	-	12 149	25 051
Cone erosion Ca	Case 1	48 000	-	48 000	- 59 150	48 000	-	48 000	- 38773	48 000		48 000	- 55 651
Link Plate	Case 0	79 677	5 695	85 372	20 659	82 865	5 923	88 788	17 494	82 865	-	82 865	22.222
	Case 1	105 629	402	106 031	- 20 655	105 854	418	106 272	- 1/ 404	106 098	-	106 098	- 23 233

	Composite steel bridge (Comparison case 0 and case 1)												
A			Bro	LCC			Brid	geLCC		Vännen07			
Activity		OMR-costs	Traffic	Tot. LCC	Difference	OMR-costs	Traffic	Tot. LCC	Difference	OMR-costs	Traffic	Tot. LCC	Difference
Edan basis	Case 0	39 925	7 610	47 535	12 465	41 522	7 914	49 436	10 564	41 182	-	41 182	10.010
Edge beam	Case 1	60 000	-	60 000	- 12 465	60 000	-	60 000	- 10 564	60 000	-	60 000	- 10 010
Poorlags	Case 0	9 529	41 392	50 921	20.070	9 910	44 290	54 200	25 800	10 834	-	10 834	70 166
Dearings	Case 1	90 000		90 000	- 39 079	90 000	-	90 000	- 55 800	90 000	-	90 000	- 75 100
Cono oracion	Case 0	8 870		8 870	20 120	9 225	-	9 225	20 775	12 149	-	12 149	- 35 851
Cone erosion	Case 1	48 000	-)	48 000	- 39 130	48 000	-	48 000	- 38773	48 000	-	48 000	
Link Dista	Case 0	79 677	5 695	85 372	20 650	82 865	5 923	88 788	17 494	82 865		82 865	22 222
LINK Flate	Case 1	105 629	402	106 031	- 20 635	105 854	418	106 272	- 1/ 404	106 098	-	106 098	- 23 233
Cleaning Steel	Case 0	204 701	-	204 701	22 444	212 889	-	212 889	44.222	280 121	-	280 121	101 410
Cleaning Steel	Case 1	171 257	-	171 257	55 444	168 667	-	168 667	44 222	178 711		178 711	101 410
Can Correction	Case 0	7 941	-	7 941	42.050	8 259	-	8 259	41 741	9 686		9 686	40.214
Gap Corrosion	Case 1	50 000	-	50 000	- 42 059	50 000	-	50 000	- 41 /41	50 000	-	50 000	- 40 314

	Transversally tensioned Glulam slab (Comparison case 0 and case 1)												
A saturday.	Í	BroLCC			BridgeLCC			Vännen07					
Activity		OMR-costs	Traffic	Tot. LCC	Difference	OMR-costs	Traffic	Tot. LCC	Difference	OMR-costs	Traffic	Tot. LCC	Difference
Province	Case 0	9 529	41 392	50 921	20.070	9 910	44 290	54 200	25 000	10 834	-	10 834	- 79 166
bearings	Case 1	90 000	-	90 000	- 39 0/9	90 000	-	90 000	- 55 800	90 000	4	90 000	
Timber Devel	Case 0	9 344	-	9 344	4 511	9 555	-	9 555	4 600	9 717	-	9 717	4 713
Timber Panel	Case 1	4 833	-	4 833	4 511	4 866	-	4 866	4 669	5 004	-	5 004	
Dennes Fed Timber	Case 0	10 553	277 408	287 961	205.001	10 976	274 688	285 664	202.004	11 455	-	11 455	0.455
Damage End Timber	Case 1	2 000	-	2 000	285 961	2 000	-	2 000	283 664	2 000	-	2 000	9 455

- Comparison and evaluation

Bridge Life Cycle Optimisation

• Only 3/8 alternative solutions were favourable

- Unexpected!
- Further investigation by iteration:
 - What would make the alternative solutions favourable (assuming the activity-pricing was correct)?

Identification of sensitivity factors (2)

- 1. ADT (Average Daily Traffic)
 - Critical ADT
- 2. Age of the bridge when an activity occur
 - Critical age for the occurrence of an activity

- TrafficWizard2011

Bridge Life Cycle Optimisation

- Excel toolbox was developed
- Insert input data concerning:
 - Traffic condition
 - LCC-conditions
- Generates tables and graphs where the following can be read out:
 - Critical ADT
 - Critical age

Input data

Traffic conditions							
ADT	6 000						
Size of the workzone	50	m					
v_norm	70	km/h					
v_red	50	km/h					
c_car	140	SEK/h					
c_heavy	320	SEK/h					
Proportion heavy	10%						

LCC-conditions							
Age for occurrens:	60						
Discount Rate:	4%						
Duration_work	28	days					
Cost of activity (case 0)	420 000	SEK					
LCC (case 0), age for activity	41522	SEK					
Alternative LCC (case 1):	60 000	SEK					
Dif. in LCC case 0 and 1	18478	SEK					
D-factor:	0.009						

- Constraints

- Only one activity at the time can be analysed
- Only applicable for road bridges
- The bridge has 2 lanes (one in each direction)
- Considers a traffic situation where 1 out of 2 lanes is closed for traffic
- The equation used was only valid for:
 - *ADT* > 3,000 vehicles
 - Size of the workzone > 30 m

- Practical example

Bridge Life Cycle Optimisation

Edge beam

- Critical ADT
- Critical age

Input data

LCC-conditions							
Age for occurrens:	60						
Discount Rate:	4%						
Duration_work	28	days					
Cost of activity (case 0)	420 000	SEK					
LCC (case 0), age for activity	41522	SEK					
Alternative LCC (case 1):	60 000	SEK					
Dif. in LCC case 0 and 1	18478	SEK					

Traffic conditions						
ADT	6 000					
Size of the workzone	50	m				
v_norm	70	km/h				
v_red	50	km/h				
c_car	140	SEK/h				
c_heavy	320	SEK/h				
Proportion heavy	10%					

- Practical example, critical ADT

Bridge Life Cycle Optimisation

Input data						
Traffic condi	tions					
ADT	6 000					
Size of the workzone	50	m				
v_norm	70	km/h				
v_red	50	km/h				
c_car	140	SEK/h				
c_heavy	320	SEK/h				
Proportion heavy	10%					

LCC-conditions						
Age for occurrens:	60					
Discount Rate:	4%					
Duration_work	28	days				
Cost of activity (case 0)	420 000	SEK				
LCC (case 0), age for activity	41522	SEK				
Alternative LCC (case 1):	60 000	SEK				
Dif. in LCC case 0 and 1	18478	SEK				
D-factor:	0,009					

Read out the critical ADT

- Practical example, critical year

Bridge Life Cycle Optimisation

Cost LCC (ca Alter Dif.

Input da				Read out the critical year		
Traffic condi	tions					
ADT	6 000				Critical age when activity occur	•
e of the workzone	50	m	600	000		
v_norm	70	km/h	600	000		Ŧ
v_red	50	km/h	500	000	C	4
c_car	140	SEK/h	500	000		I .
c_heavy	320	SEK/h	100	000	Case 1	1
roportion heavy	10%		S 400	000		4
			U 300	000		-
LCC-conditions				000		4
e for occurrens:	60		200	000		4
Discount Rate:	4%		E I			1
Duration_work	28	days	100	000		-
of activity (case 0)	420 000	SEK				-
ise 0), age for activity	41522	SEK		0		1
native LCC (case 1):	60 000	SEK			0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75	80
in LCC case 0 and 1	18478	SEK			Age [years]	
					Age [years] ~53	
D-factor:	0,009					

CONCLUSIONS

- To carry out an LCC-analysis a number of assumptions need to be performed, therein lays an uncertainty
 - This uncertainty is acceptable, as long as the same conditions apply for all activities/alternatives
- It is unsuitable to run a full scale LCC-analysis at an initial stage
 - A parametric optimisation is preferable
- It was <u>not</u> the detailing solutions, conventional or alternative, themselves that was favourable or not, but:
 - The expected ADT
 - When in time the activity occurred

CONCLUSIONS

- Method to use LCC as a decision-making tool in design of new bridges was developed:
 - Flow chart
 - TrafficWizard2011
- This method can provide designers with an extended basis to choose the most viable long term design decisions, with regard to life cycle costs

DESIGN OF SHORT-SPAN BRIDGES WITH REGARD TO LIFE CYCLE COSTS

Bridge Life Cycle Optimisation

THANK YOU FOR YOUR ATTENTION

NIKLAS LARSSON (niln@cowi.se) DAN NILSSON (dnnn@cowi.se)